MENAS'S CONJECTURE REVISITED

被引:2
|
作者
Matet, Pierre [1 ]
机构
[1] Univ Caen, CNRS, Lab Math, BP 5186, F-14032 Caen, France
关键词
Menas's conjecture; ideal on P ( kappa )(lambda); weak saturation; COMBINATORIAL PROPERTY; IDEALS; SATURATION; SUBSETS;
D O I
10.1017/bsl.2023.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an article published in 1974, Menas conjectured that any stationary subset of P ( kappa )(lambda) can be split in lambda(kappa) many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on P ( kappa )(lambda). In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.
引用
收藏
页码:354 / 405
页数:52
相关论文
共 50 条
  • [21] Complementary conjecture revisited
    Yu, JT
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 131 (03) : 319 - 322
  • [22] Kemnitz' conjecture revisited
    Savchev, S
    Chen, F
    DISCRETE MATHEMATICS, 2005, 297 (1-3) : 196 - 201
  • [23] Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture
    Downarowicz, Tomasz
    Kasjan, Stanislaw
    STUDIA MATHEMATICA, 2015, 229 (01) : 45 - 72
  • [24] Artin's primitive root conjecture for function fields revisited
    Kim, Seoyoung
    Murty, M. Ram
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 67
  • [25] Correlated stability conjecture revisited
    Buchel, Alex
    Pagnutti, Chris
    PHYSICS LETTERS B, 2011, 697 (02) : 168 - 172
  • [26] Tolerance stability conjecture revisited
    Mazur, M
    TOPOLOGY AND ITS APPLICATIONS, 2003, 131 (01) : 33 - 38
  • [27] A conjecture of Beauville and Catanese revisited
    Pink, R
    Roessler, D
    MATHEMATISCHE ANNALEN, 2004, 330 (02) : 293 - 308
  • [28] A conjecture of Beauville and Catanese revisited
    Richard Pink
    Damian Roessler
    Mathematische Annalen, 2004, 330 : 293 - 308
  • [29] How to avoid using the Regularity Lemma: Posa's conjecture revisited
    Levitt, Ian
    Sarkozy, Gabor N.
    Szemeredi, Endre
    DISCRETE MATHEMATICS, 2010, 310 (03) : 630 - 641
  • [30] The class-breadth conjecture revisited
    Eick, Bettina
    Newman, M. F.
    O'Brien, E. A.
    JOURNAL OF ALGEBRA, 2006, 300 (01) : 384 - 393