Lagrangian configurations and Hamiltonian maps

被引:4
|
作者
Polterovich, Leonid [1 ]
Shelukhin, Egor [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
symplectic manifold; Hamiltonian diffeomorphism; Lagrangian submanifold; Poincare recurrence; Hofer's metric; Floer theory; orbifold; symmetric product; SYMPLECTIC TOPOLOGY; SPECTRAL INVARIANTS; FLOER THEORY; GEOMETRY; HOMEOMORPHISMS; SIMPLICITY;
D O I
10.1112/S0010437X23007455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofer's metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincare recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.
引用
收藏
页码:2483 / 2520
页数:39
相关论文
共 50 条