HAMILTONIAN WALKS AND POLYMER CONFIGURATIONS

被引:30
|
作者
MALAKIS, A
机构
[1] UNIV ESSEX,DEPT PHYS,COLCHESTER CO4 3SQ,ESSEX,ENGLAND
[2] UNIV ESSEX,INST POLYMER SCI,COLCHESTER CO4 3SQ,ESSEX,ENGLAND
来源
PHYSICA A | 1976年 / 84卷 / 02期
关键词
D O I
10.1016/0378-4371(76)90002-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:256 / 284
页数:29
相关论文
共 50 条
  • [1] Hamiltonian walks on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (02)
  • [2] Hamiltonian Walks of Phylogenetic Treespaces
    Gordon, Kevaughn
    Ford, Eric
    St. John, Katherine
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (04) : 1076 - 1079
  • [3] Scaling of Hamiltonian walks on fractal lattices
    Elezovic-Hadzic, Suncica
    Marcetic, Dusanka
    Maletic, Slobodan
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [4] Lagrangian configurations and Hamiltonian maps
    Polterovich, Leonid
    Shelukhin, Egor
    COMPOSITIO MATHEMATICA, 2023, 159 (12) : 2483 - 2520
  • [5] Hamiltonian Walks and Hamiltonian-Connected 3-Path Graphs
    Byers, Alexis
    Hallas, Jamie
    Olejniczak, Drake
    Zayed, Mohra
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 213 - 231
  • [6] ANALYTICAL ENUMERATION OF HAMILTONIAN-WALKS ON A FRACTAL
    BRADLEY, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (01): : L19 - L24
  • [7] Simulation of Quantum Walks via Hamiltonian Reduction
    Gregory, Aaron
    Chiang, Chen-Fu
    2018 IEEE NANOTECHNOLOGY SYMPOSIUM (ANTS), 2018,
  • [8] ENUMERATIONS OF THE HAMILTONIAN-WALKS ON A CUBIC SUBLATTICE
    PANDE, VS
    JOERG, C
    GROSBERG, AY
    TANAKA, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18): : 6231 - 6236
  • [9] CENTER CONFIGURATIONS OF HAMILTONIAN CUBIC SYSTEMS
    Blows, Terence R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) : 1111 - 1122
  • [10] Hamiltonian walks on Sierpinski and n-simplex fractals
    Stajic, J
    Elezovic-Hadzic, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : 5677 - 5695