StruNet: Perceptual and low-rank regularized transformer for medical image denoising

被引:8
|
作者
Ma, Yuhui [1 ,2 ]
Yan, Qifeng [1 ]
Liu, Yonghuai [3 ]
Liu, Jiang [4 ]
Zhang, Jiong [1 ]
Zhao, Yitian [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Cixi 315399, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Edge Hill Univ, Dept Comp Sci, Ormskirk, England
[4] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
关键词
low-rank regularization; medical image denoising; perceptual loss; Swin transformer; COHERENCE TOMOGRAPHY IMAGES; LOW-DOSE CT; NOISE-REDUCTION; SPECKLE; RECONSTRUCTION; SUPPRESSION; MODEL;
D O I
10.1002/mp.16550
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundVarious types of noise artifacts inevitably exist in some medical imaging modalities due to limitations of imaging techniques, which impair either clinical diagnosis or subsequent analysis. Recently, deep learning approaches have been rapidly developed and applied on medical images for noise removal or image quality enhancement. Nevertheless, due to complexity and diversity of noise distribution representations in different medical imaging modalities, most of the existing deep learning frameworks are incapable to flexibly remove noise artifacts while retaining detailed information. As a result, it remains challenging to design an effective and unified medical image denoising method that will work across a variety of noise artifacts for different imaging modalities without requiring specialized knowledge in performing the task. PurposeIn this paper, we propose a novel encoder-decoder architecture called Swin transformer-based residual u-shape Network (StruNet), for medical image denoising. MethodsOur StruNet adopts a well-designed block as the backbone of the encoder-decoder architecture, which integrates Swin Transformer modules with residual block in parallel connection. Swin Transformer modules could effectively learn hierarchical representations of noise artifacts via self-attention mechanism in non-overlapping shifted windows and cross-window connection, while residual block is advantageous to compensate loss of detailed information via shortcut connection. Furthermore, perceptual loss and low-rank regularization are incorporated into loss function respectively in order to constrain the denoising results on feature-level consistency and low-rank characteristics. ResultsTo evaluate the performance of the proposed method, we have conducted experiments on three medical imaging modalities including computed tomography (CT), optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). ConclusionsThe results demonstrate that the proposed architecture yields a promising performance of suppressing multiform noise artifacts existing in different imaging modalities.
引用
收藏
页码:7654 / 7669
页数:16
相关论文
共 50 条
  • [41] Hyperspectral Image Mixed Denoising Using Difference Continuity-Regularized Nonlocal Tensor Subspace Low-Rank Learning
    Sun, Le
    He, Chengxun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [42] Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning
    Li, Huafeng
    He, Xiaoge
    Tao, Dapeng
    Tang, Yuanyan
    Wang, Ruxin
    PATTERN RECOGNITION, 2018, 79 : 130 - 146
  • [43] Hyperspectral image denoising based on low-rank coefficients and orthonormal dictionary
    Zhang, Fanlong
    Yang, Guowei
    Xue, Jing-Hao
    SIGNAL PROCESSING, 2020, 177
  • [44] Image denoising via structure-constrained low-rank approximation
    Yongqin Zhang
    Ruiwen Kang
    Xianlin Peng
    Jun Wang
    Jihua Zhu
    Jinye Peng
    Hangfan Liu
    Neural Computing and Applications, 2020, 32 : 12575 - 12590
  • [45] Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank Factorizations
    Zhuang, Lina
    Fu, Xiyou
    Ng, Michael K.
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10438 - 10454
  • [46] A Low-Rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising
    Gong, Xiao
    Chen, Wei
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1168 - 1180
  • [47] HYPERSPECTRAL IMAGE DENOISING BASED ON LOW-RANK REPRESENTATION AND SUPERPIXEL SEGMENTATION
    Ma, Jiayi
    Li, Chang
    Ma, Yong
    Wang, Zhongyuan
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3086 - 3090
  • [48] Hyperspectral Image Denoising Using Improved Low-Rank and Sparsity Constraints
    Zhong, Chongxiao
    Zhang, Junping
    Guo, Qingle
    EARTH OBSERVING SYSTEMS XXIII, 2018, 10764
  • [49] Multi-scale low-rank approximation method for image denoising
    Yang Ou
    Bo Zhang
    Bailin Li
    Multimedia Tools and Applications, 2022, 81 : 20357 - 20371
  • [50] Multi-scale low-rank approximation method for image denoising
    Ou, Yang
    Zhang, Bo
    Li, Bailin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 20357 - 20371