StruNet: Perceptual and low-rank regularized transformer for medical image denoising

被引:8
|
作者
Ma, Yuhui [1 ,2 ]
Yan, Qifeng [1 ]
Liu, Yonghuai [3 ]
Liu, Jiang [4 ]
Zhang, Jiong [1 ]
Zhao, Yitian [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Cixi 315399, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Edge Hill Univ, Dept Comp Sci, Ormskirk, England
[4] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
关键词
low-rank regularization; medical image denoising; perceptual loss; Swin transformer; COHERENCE TOMOGRAPHY IMAGES; LOW-DOSE CT; NOISE-REDUCTION; SPECKLE; RECONSTRUCTION; SUPPRESSION; MODEL;
D O I
10.1002/mp.16550
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundVarious types of noise artifacts inevitably exist in some medical imaging modalities due to limitations of imaging techniques, which impair either clinical diagnosis or subsequent analysis. Recently, deep learning approaches have been rapidly developed and applied on medical images for noise removal or image quality enhancement. Nevertheless, due to complexity and diversity of noise distribution representations in different medical imaging modalities, most of the existing deep learning frameworks are incapable to flexibly remove noise artifacts while retaining detailed information. As a result, it remains challenging to design an effective and unified medical image denoising method that will work across a variety of noise artifacts for different imaging modalities without requiring specialized knowledge in performing the task. PurposeIn this paper, we propose a novel encoder-decoder architecture called Swin transformer-based residual u-shape Network (StruNet), for medical image denoising. MethodsOur StruNet adopts a well-designed block as the backbone of the encoder-decoder architecture, which integrates Swin Transformer modules with residual block in parallel connection. Swin Transformer modules could effectively learn hierarchical representations of noise artifacts via self-attention mechanism in non-overlapping shifted windows and cross-window connection, while residual block is advantageous to compensate loss of detailed information via shortcut connection. Furthermore, perceptual loss and low-rank regularization are incorporated into loss function respectively in order to constrain the denoising results on feature-level consistency and low-rank characteristics. ResultsTo evaluate the performance of the proposed method, we have conducted experiments on three medical imaging modalities including computed tomography (CT), optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). ConclusionsThe results demonstrate that the proposed architecture yields a promising performance of suppressing multiform noise artifacts existing in different imaging modalities.
引用
收藏
页码:7654 / 7669
页数:16
相关论文
共 50 条
  • [21] 3D geometrical total variation regularized low-rank matrix factorization for hyperspectral image denoising
    Zhang, Feng
    Zhang, Kai
    Wan, Wenbo
    Sun, Jiande
    SIGNAL PROCESSING, 2023, 207
  • [22] Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
    Xu, Fei
    Chen, Yongyong
    Peng, Chong
    Wang, Yongli
    Liu, Xuefeng
    He, Guoping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1141 - 1145
  • [23] Kronecker component with robust low-rank dictionary for image denoising
    Zhang, Lei
    Liu, Cong
    DISPLAYS, 2022, 74
  • [24] Low-rank image denoising based on minimum variance estimator
    Guo, Qiang
    Zhang, Caiming
    Zhang, Yunfeng
    Liu, Hui
    Shen, Xiaohong
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (12): : 2237 - 2246
  • [25] Low-rank Bayesian tensor factorization for hyperspectral image denoising
    Wei, Kaixuan
    Fu, Ying
    NEUROCOMPUTING, 2019, 331 (412-423) : 412 - 423
  • [26] DEEP SPARSE AND LOW-RANK PRIOR FOR HYPERSPECTRAL IMAGE DENOISING
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1217 - 1220
  • [27] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [28] HYPERSPECTRAL IMAGE DENOISING WITH MULTISCALE LOW-RANK MATRIX RECOVERY
    Huang, Zhihong
    Li, Shutao
    Hu, Fang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5442 - 5445
  • [29] An adaptive boosting procedure for low-rank based image denoising
    Fan, Linwei
    Li, Xuemei
    Fan, Hui
    Zhang, Caiming
    SIGNAL PROCESSING, 2019, 164 : 110 - 124
  • [30] Image Denoising Using Low-Rank Dictionary and Sparse Representation
    Li, Tao
    Wang, Weiwei
    Feng, Xiangchu
    Xu, Long
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 228 - 232