Dynamic stall characteristics of wind turbine airfoil in sand-wind environment

被引:6
|
作者
Wang, Qing [1 ]
Yu, Muyao [1 ]
Li, Deshun [1 ,2 ]
Li, Rennian [1 ]
机构
[1] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Wind turbine; Airfoil; Dynamic stall; Sand -wind environment; CFD; PERFORMANCE; SIMULATION; MODEL;
D O I
10.1016/j.oceaneng.2023.114080
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Although the traditional dynamic stall has been well studied, the effect of sand particle on dynamic stall char-acteristics is seldom considered in the previous studies. Therefore, a research about dynamic stall of the S809 airfoil is accomplished under a sand-wind environment. The unsteady CFD method and the discrete phase model (DPM) are adopted in this research to simulate the dynamic stall characteristic of the S809 airfoil. The influence of different sand particle diameters and different particle concentrations on airfoil dynamic stall characteristics is studied respectively. The simulated results indicate that the maximum lift coefficient and drag coefficient with particle diameter of 10 mu m decrease about 2.18% and 2.52% respectively compared with that of the clear air. Meanwhile, the maximum lift coefficient decreases about 6.93% for the case of particle concentration with 62.6 g/m3. The simulated results also indicate that the lift coefficient and drag coefficient decreasing are enlarged with particle concentration increasing. This tendency indicated that the efficiency of a wind turbine would be reduced in sand storm weather.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] STUDY ON DYNAMIC STALL CHARACRERISTICS OF WIND TURBINE AIRFOIL UNDER COMPOUND MOTION
    Feng J.
    Zhao Z.
    Chen M.
    Jiang R.
    Liu Y.
    Wang D.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (08): : 430 - 436
  • [22] Effect of chordwise installtion of vortex generators on dynamic stall of wind turbine airfoil
    Chen J.
    Zhu C.
    Zhong W.
    Wang T.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (08): : 401 - 407
  • [23] Aerodynamic modeling of wind turbine airfoil concerning dynamic stall and Gurney flap
    Yang, Junwei
    Yang, Hua
    Wang, Xiangjun
    ACTA MECHANICA SINICA, 2023, 39 (09)
  • [24] OPTIMAL DESIGN OF DYNAMIC STALL OF WIND TURBINE AIRFOIL BASED ON SURROGATE MODEL
    Zhang Q.
    Miao W.
    Chang L.
    Liu Q.
    Li C.
    Zhang W.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 343 - 350
  • [25] INFLUENCE OF VORTEX GENERATORS INSTALLATION PARAMETERS ON DYNAMIC STALL OF WIND TURBINE AIRFOIL
    Jiang R.
    Zhao Z.
    Liu H.
    Ma Y.
    Chen M.
    Feng J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (01): : 218 - 225
  • [26] Effects of fluctuating velocity on dynamic stall of vertical axis wind turbine airfoil
    Wang, Qing
    Ma, Ping
    Zhao, Zhenzhou
    Li, Deshun
    RENEWABLE ENERGY, 2024, 235
  • [27] Study on Boundary Layer Separation of Wind Turbine Airfoil During Dynamic Stall
    Li, Shuang
    Zhang, Lei
    Song, Juan-Juan
    Yang, Ke
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2019, 40 (09): : 2043 - 2050
  • [28] Effects of leading-edge rod on dynamic stall performance of a wind turbine airfoil
    Zhong, Junwei
    Li, Jingyin
    Guo, Penghua
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2017, 231 (08) : 753 - 769
  • [29] Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet
    Xu, He-Yong
    Qiao, Chen-Liang
    Ye, Zheng-Yin
    ENERGIES, 2016, 9 (06):
  • [30] Numerical study on dynamic stall flowcontrol for wind turbine airfoil using plasma actuator
    Zhang W.
    Shi Z.
    Li G.
    Yang Y.
    Huang M.
    Bai Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (06): : 1678 - 1689