Technical note: Evaluation of missing data imputation methods for human osteometric measurements

被引:0
|
作者
Pang, Jinyong [1 ]
Liu, Xiaoming [1 ,2 ]
机构
[1] Univ S Florida, USF Genom & Coll Publ Hlth, Tampa, FL USA
[2] Univ S Florida, USF Genom & Coll Publ Hlth, 3720 Spectrum Blvd, Suite 304, Tampa, FL 33612 USA
来源
关键词
craniometrics; imputation; missing data; osteometrics;
D O I
10.1002/ajpa.24787
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
It is not uncommon for biological anthropologists to analyze incomplete bioarcheological or forensic skeleton specimens. As many quantitative multivariate analyses cannot handle incomplete data, missing data imputation or estimation is a common preprocessing practice for such data. Using William W. Howells' Craniometric Data Set and the Goldman Osteometric Data Set, we evaluated the performance of multiple popular statistical methods for imputing missing metric measurements. Results indicated that multiple imputation methods outperformed single imputation methods, such as Bayesian principal component analysis (BPCA). Multiple imputation with Bayesian linear regression implemented in the R package norm2, the Expectation-Maximization (EM) with Bootstrapping algorithm implemented in Amelia, and the Predictive Mean Matching (PMM) method and several of the derivative linear regression models implemented in mice, perform well regarding accuracy, robustness, and speed. Based on the findings of this study, we suggest a practical procedure for choosing appropriate imputation methods.
引用
收藏
页码:666 / 676
页数:11
相关论文
共 50 条
  • [1] Evaluation of missing data imputation methods for human osteometric measurements
    Liu, Xiaoming
    Pang, Jinyong
    [J]. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2024, 183 : 103 - 104
  • [2] Imputation methods for missing data in educational diagnostic evaluation
    Fernandez-Alonso, Ruben
    Suarez-Alvarez, Javier
    Muniz, Jose
    [J]. PSICOTHEMA, 2012, 24 (01) : 167 - 175
  • [3] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420
  • [4] An evaluation of methods for imputation of missing trace element data in groundwaters
    Dickson, Bruce L.
    Giblin, Angela M.
    [J]. GEOCHEMISTRY-EXPLORATION ENVIRONMENT ANALYSIS, 2007, 7 : 173 - 178
  • [5] An Imputation Technique for Missing Data in Propagation Measurements
    Cheng, Lin
    [J]. 2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [6] Missing data and imputation methods in partition of variables
    da Silva, AL
    Saporta, G
    Bacelar-Nicolau, H
    [J]. CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 631 - 637
  • [7] Imputation methods for missing data for polygenic models
    Brooke Fridley
    Kari Rabe
    Mariza de Andrade
    [J]. BMC Genetics, 4
  • [8] Imputation of missing longitudinal data: a comparison of methods
    Engels, JM
    Diehr, P
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (10) : 968 - 976
  • [9] Imputation methods for missing data for polygenic models
    Fridley, B
    Rabe, K
    de Andrade, M
    [J]. BMC GENETICS, 2003, 4 (Suppl 1)
  • [10] Missing traffic data: comparison of imputation methods
    Li, Yuebiao
    Li, Zhiheng
    Li, Li
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2014, 8 (01) : 51 - 57