Missing data and imputation methods in partition of variables

被引:0
|
作者
da Silva, AL
Saporta, G
Bacelar-Nicolau, H
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We deal with the effect of missing data under a "Missing at Random Model" on classification of variables with non-hierarchical methods. The partitions are compared by the Rand index.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 50 条
  • [1] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420
  • [2] Imputation of missing longitudinal data: a comparison of methods
    Engels, JM
    Diehr, P
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (10) : 968 - 976
  • [3] Imputation methods for missing data for polygenic models
    Brooke Fridley
    Kari Rabe
    Mariza de Andrade
    [J]. BMC Genetics, 4
  • [4] Missing traffic data: comparison of imputation methods
    Li, Yuebiao
    Li, Zhiheng
    Li, Li
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2014, 8 (01) : 51 - 57
  • [5] Imputation methods for missing data for polygenic models
    Fridley, B
    Rabe, K
    de Andrade, M
    [J]. BMC GENETICS, 2003, 4 (Suppl 1)
  • [6] Optimizing Imputation for Educational Data: Exploring Training Partition and Missing Data Ratios
    Collier, Zachary K.
    Chawla, Kamal
    Soyoye, Olushola
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2023,
  • [7] A simulation study on missing data imputation for dichotomous variables using statistical and machine learning methods
    Yingfeng Ge
    Zhiwei Li
    Jinxin Zhang
    [J]. Scientific Reports, 13
  • [8] A simulation study on missing data imputation for dichotomous variables using statistical and machine learning methods
    Ge, Yingfeng
    Li, Zhiwei
    Zhang, Jinxin
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Improved methods for the imputation of missing data by nearest neighbor methods
    Tutz, Gerhard
    Ramzan, Shahla
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 90 : 84 - 99
  • [10] Auxiliary Variables in Multiple Imputation When Data Are Missing Not at Random
    Mustillo, Sarah
    Kwon, Soyoung
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2015, 39 (02): : 73 - 91