Missing traffic data: comparison of imputation methods

被引:127
|
作者
Li, Yuebiao [1 ]
Li, Zhiheng [1 ]
Li, Li [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
interpolation; principal component analysis; probability; traffic engineering computing; road traffic control; traffic management applications; traffic control applications; traffic flow data prediction; sensor failure; transmission error; missing traffic data estimation; data imputation methods; prediction methods; interpolation methods; statistical learning methods; reconstruction errors; statistical behaviours; running speeds; probabilistic principal component analysis; PPCA; numerical tests; FLOW PREDICTION; NEURAL-NETWORKS; MODELS;
D O I
10.1049/iet-its.2013.0052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many traffic management and control applications require highly complete and accurate data of traffic flow. However, because of various reasons such as sensor failure or transmission error, it is common that some traffic flow data are lost. As a result, various methods were proposed by using a wide spectrum of techniques to estimate missing traffic data in the last two decades. Generally, these missing data imputation methods can be categorised into three kinds: prediction methods, interpolation methods and statistical learning methods. To assess their performance, these methods are compared from different aspects in this paper, including reconstruction errors, statistical behaviours and running speeds. Results show that statistical learning methods are more effective than the other two kinds of imputation methods when data of a single detector is utilised. Among various methods, the probabilistic principal component analysis (PPCA) yields best performance in all aspects. Numerical tests demonstrate that PPCA can be used to impute data online before making further analysis (e.g. make traffic prediction) and is robust to weather changes.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条
  • [1] Imputation of missing longitudinal data: a comparison of methods
    Engels, JM
    Diehr, P
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (10) : 968 - 976
  • [2] Comparison of missing data imputation methods using weather data
    Nida, Hafiza
    Kashif, Muhammad
    Khan, Muhammad Imran
    Ghamkhar, Madiha
    [J]. PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2023, 60 (02): : 327 - 336
  • [3] A comparison of imputation methods for the consecutive missing temperature data
    Kim, Hee-Kyung
    Kang, In-Kyeong
    Lee, Jae-Won
    Lee, Yung-Seop
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (03) : 549 - 557
  • [4] Application and Comparison of Imputation Methods for Missing Degradation Data
    Fan, Ye
    Sun, Fuqiang
    Jiang, Tongmin
    [J]. ENGINEERING ASSET MANAGEMENT - SYSTEMS, PROFESSIONAL PRACTICES AND CERTIFICATION, 2015, : 1607 - 1614
  • [5] Comparison of imputation methods for missing laboratory data in medicine
    Waljee, Akbar K.
    Mukherjee, Ashin
    Singal, Amit G.
    Zhang, Yiwei
    Warren, Jeffrey
    Balis, Ulysses
    Marrero, Jorge
    Zhu, Ji
    Higgins, Peter D. R.
    [J]. BMJ OPEN, 2013, 3 (08):
  • [6] Missing Network Data A Comparison of Different Imputation Methods
    Krause, Robert W.
    Huisman, Mark
    Steglich, Christian
    Snijders, Tom A. B.
    [J]. 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 159 - 163
  • [7] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420
  • [8] Comparison of imputation methods for missing production data of dairy cattle
    You, J.
    Ellis, J. L.
    Adams, S.
    Sahar, M.
    Jacobs, M.
    Tulpan, D.
    [J]. ANIMAL, 2023, 17
  • [9] Comparison of missing value imputation methods for crop yield data
    Lokupitiya, Ravindra S.
    Lokupitiya, Erandathie
    Paustian, Keith
    [J]. ENVIRONMETRICS, 2006, 17 (04) : 339 - 349
  • [10] A comparison of multiple imputation methods for missing data in longitudinal studies
    Huque, Md Hamidul
    Carlin, John B.
    Simpson, Julie A.
    Lee, Katherine J.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18