Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage

被引:105
|
作者
Dong, Jiufeng [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
Qiu, Peiqi [1 ,4 ]
Pan, Yupeng [5 ,6 ]
Niu, Yujuan [1 ,2 ,3 ]
Sun, Liang [1 ,2 ,3 ]
Pan, Zizhao [1 ,2 ,3 ]
Liu, Yuqi [1 ,2 ,3 ]
Tan, Li [1 ,2 ,3 ]
Xu, Xinwei [1 ,2 ,3 ]
Xu, Chen [5 ,6 ]
Luo, Guangfu [1 ,4 ]
Wang, Qing [7 ]
Wang, Hong [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Engn Res Ctr Novel Elect Informat Mat & D, Shenzhen 518055, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Funct Oxide Mat & Devices, Shenzhen 518055, Guangdong, Peoples R China
[4] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Grubbs Inst, Shenzhen 518055, Guangdong, Peoples R China
[6] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
capacitors; elevated temperature; energy storage; hybrid films; molecular engineering; POLYMER NANOCOMPOSITES; DENSITY; COMPOSITES; STRENGTH; POLYPROPYLENE; IMPROVEMENT; CONDUCTION; TRAPS;
D O I
10.1002/adma.202211487
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-temperature polymer dielectrics have broad application prospects in next-generation microelectronics and electrical power systems. However, the capacitive energy densities of dielectric polymers at elevated temperatures are severely limited by carrier excitation and transport. Herein, a molecular engineering strategy is presented to regulate the bulk-limited conduction in the polymer by bonding amino polyhedral oligomeric silsesquioxane (NH2-POSS) with the chain ends of polyimide (PI). Experimental studies and density functional theory (DFT) calculations demonstrate that the terminal group NH2-POSS with a wide-bandgap of E-g approximate to 6.6 eV increases the band energy levels of the PI and induces the formation of local deep traps in the hybrid films, which significantly restrains carrier transport. At 200 degrees C, the hybrid film exhibits concurrently an ultrahigh discharged energy density of 3.45 J cm(-3) and a high gravimetric energy density of 2.74 J g(-1), with the charge-discharge efficiency >90%, far exceeding those achieved in the dielectric polymers and nearly all other polymer nanocomposites. Moreover, the NH2-POSS terminated PI film exhibits excellent charge-discharge cyclability (>50000) and power density (0.39 MW cm(-3)) at 200 degrees C, making it a promising candidate for high-temperature high-energy-density capacitors. This work represents a novel strategy to scalable polymer dielectrics with superior capacitive performance operating in harsh environments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Flexible mica films coated by magnetron sputtered insulating layers for high-temperature capacitive energy storage
    Yin, Chao
    Zhang, Tiandong
    Zhang, Changhai
    Zhang, Yue
    Jeong, Chang Kyu
    Hwang, Geon-Tae
    Chi, Qingguo
    SUSMAT, 2024,
  • [22] High-temperature polymer dielectrics with superior capacitive energy storage performance
    Qin, Hongmei
    Song, Jinhui
    Liu, Man
    Zhang, Yibo
    Qin, Shiyu
    Chen, Hang
    Shen, Kangdi
    Wang, Shan
    Li, Qi
    Yang, Quanling
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [23] Anisotropic Semicrystalline Homopolymer Dielectrics for High-Temperature Capacitive Energy Storage
    Xu, Wenhan
    Zhou, Chenyi
    Ji, Wenhai
    Zhang, Yunhe
    Jiang, Zhenhua
    Bertram, Florian
    Shang, Yingshuang
    Zhang, Haibo
    Shen, Chen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (24)
  • [24] Engineering Poly(phthalazinone ether sulfone) Dielectric Films for Stable High-Temperature Capacitive Energy Storage
    Gu, Chengwen
    Sun, Fanchen
    Wang, Qitong
    Li, Jiahui
    Zhao, Yi
    Zhang, Yunhe
    Zhang, Shouhai
    Jian, Xigao
    Weng, Zhihuan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (51) : 22131 - 22140
  • [25] Flexible mica films for high-temperature energy storage
    Xu, Xinwei
    Liu, Wenlong
    Li, Yi
    Wang, Yifei
    Yuan, Qibin
    Chen, Jie
    Ma, Rong
    Xiang, Feng
    Wang, Hong
    JOURNAL OF MATERIOMICS, 2018, 4 (03) : 173 - 178
  • [26] Nanodiamond/Polyimide High Temperature Dielectric Films for Energy Storage Applications
    Wang, David H.
    Fillery, Scott P.
    Durstock, Michael F.
    Dai, Liming
    Vaia, Richard A.
    Tan, Loon-Seng
    CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 : 410 - +
  • [27] Scalable polyolefin-based all-organic dielectrics with superior high-temperature capacitive energy storage performance
    Zhou, Yao
    Chen, Yuhan
    Cui, Yuxin
    Li, Yanzhi
    Li, Zhiyuan
    Zhou, Changwu
    Cheng, Lu
    Liu, Wenfeng
    ENERGY STORAGE MATERIALS, 2024, 72
  • [28] Polyimide nanocomposites for high-temperature capacitive energy storage applications by incorporating functional graphene oxide nanosheets: Design, preparation, and mechanism
    Ni, Ke Yang
    Zhang, Zhao Xin
    Zhang, Ai Ping
    Bian, Jun
    Li, Xin Kang
    Wei, Cong
    Lin, Hai Lan
    Chen, Dai Qiang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (30)
  • [29] Horizontally-oriented barium titanate@polydomine/polyimide nanocomposite films for high-temperature energy storage
    Yuan, Peimei
    Xue, Ruixuan
    Wang, Yan
    Su, Yao
    Zhao, Bo
    Wu, ChenLi
    An, Wen
    Zhao, Weixing
    Ma, Rong
    Hu, Dengwei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 662 : 1052 - 1062
  • [30] Surface-gradient-structured polymer films with restricted thermal expansion for high-temperature capacitive energy storage
    Ran, Zhaoyu
    Yang, Mingcong
    Wang, Rui
    Li, Junluo
    Li, Manxi
    Meng, Li
    Liu, Yuhang
    Hu, Jun
    He, Jinliang
    Li, Qi
    ENERGY STORAGE MATERIALS, 2025, 74