Flexible mica films coated by magnetron sputtered insulating layers for high-temperature capacitive energy storage

被引:49
|
作者
Yin, Chao [1 ,2 ]
Zhang, Tiandong [1 ,2 ]
Zhang, Changhai [1 ,2 ]
Zhang, Yue [1 ,2 ]
Jeong, Chang Kyu [3 ]
Hwang, Geon-Tae [4 ]
Chi, Qingguo [1 ,2 ]
机构
[1] Harbin Univ Sci & Technol, Minist Educ, Key Lab Engn Dielect & Its Applicat, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin, Peoples R China
[3] Jeonbuk Natl Univ, Div Adv Mat Engn, Jeonju, South Korea
[4] Pukyong Natl Univ, Dept Mat Sci & Engn, Busan, South Korea
来源
SUSMAT | 2024年
基金
中国国家自然科学基金;
关键词
energy storage; high temperature; insulating layer; magnetron sputtering; mica; PERFORMANCE; DEPOSITION;
D O I
10.1002/sus2.228
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-temperature energy storage performance of dielectric capacitors is crucial for the next generation of power electronic devices. However, conduction losses rise sharply at elevated temperature, limiting the application of energy storage capacitors. Here, the mica films magnetron sputtered by different insulating layers are specifically investigated, which exhibit the excellent high-temperature energy storage performance. The experimental results revealed that the PbZrO3/Al2O3/PbZrO3 (PZO/AO/PZO) interface insulating layers can effectively reduce the high-temperature leakage current and conduction loss of the composite films. Consequently, the ultrahigh energy storage density (Wrec) and charge-discharge efficiency (eta) can be achieved simultaneously in the flexible mica-based composite films. Especially, PZO/AO/PZO/mica/PZO/AO/PZO (PAPMPAP) films possess excellent Wrec of 27.5 J/cm3 and eta of 87.8% at 200 degrees C, which are significantly better than currently reported high-temperature capacitive energy storage dielectric materials. Together with outstanding power density and electrical cycling stability, the flexible films in this work have great application potential in high-temperature energy storage capacitors. Moreover, the magnetron sputtering technology can deposit large-area nanoscale insulating layers on the surface of capacitor films, which can provide technical support for the industrial production of capacitors. All-inorganic insulating layers (PZO and AO) are grown on both sides of the mica films through the magnetron sputtering process. The PAPMPAP thin films possess excellent energy storage performance with Wrec of 27.5 J/cm3 and eta of 87.8% at 200 degrees C. The thin films exhibit good stability under an electric fatigue endurance of 105 cycles and a wide working temperature range of 25 degrees C-200 degrees C. image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Flexible mica films for high-temperature energy storage
    Xu, Xinwei
    Liu, Wenlong
    Li, Yi
    Wang, Yifei
    Yuan, Qibin
    Chen, Jie
    Ma, Rong
    Xiang, Feng
    Wang, Hong
    JOURNAL OF MATERIOMICS, 2018, 4 (03) : 173 - 178
  • [2] Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics
    Cheng, Sang
    Zhou, Yao
    Hu, Jun
    He, Jinliang
    Li, Qi
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2020, 27 (02) : 498 - 503
  • [3] Interface engineering of polymer composite films for high-temperature capacitive energy storage
    Yu, Xiang
    Yang, Rui
    Zhang, Wenqi
    Yang, Xiao
    Ma, Chuang
    Sun, Kaixuan
    Shen, Guangyi
    Lv, Fangcheng
    Fan, Sidi
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [4] HIGH-TEMPERATURE ELECTRICAL INSULATING PROPERTIES OF RF MAGNETRON SPUTTERED ALUMINA COATINGS ON COPPER
    VUORISTO, P
    MANTYLA, T
    KETTUNEN, P
    PLASMA SURFACE ENGINEERING, VOLS 1 AND 2, 1989, : 609 - 616
  • [5] Ladderphane copolymers for high-temperature capacitive energy storage
    Jie Chen
    Yao Zhou
    Xingyi Huang
    Chunyang Yu
    Donglin Han
    Ao Wang
    Yingke Zhu
    Kunming Shi
    Qi Kang
    Pengli Li
    Pingkai Jiang
    Xiaoshi Qian
    Hua Bao
    Shengtao Li
    Guangning Wu
    Xinyuan Zhu
    Qing Wang
    Nature, 2023, 615 : 62 - 66
  • [6] Ladderphane copolymers for high-temperature capacitive energy storage
    Chen, Jie
    Zhou, Yao
    Huang, Xingyi
    Yu, Chunyang
    Han, Donglin
    Wang, Ao
    Zhu, Yingke
    Shi, Kunming
    Kang, Qi
    Li, Pengli
    Jiang, Pingkai
    Qian, Xiaoshi
    Bao, Hua
    Li, Shengtao
    Wu, Guangning
    Zhu, Xinyuan
    Wang, Qing
    NATURE, 2023, 615 (7950) : 62 - +
  • [7] Dielectric polymers for high-temperature capacitive energy storage
    Li, He
    Zhou, Yao
    Liu, Yang
    Li, Li
    Liu, Yi
    Wang, Qing
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (11) : 6369 - 6400
  • [8] Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage
    Dong, Jiufeng
    Li, Li
    Qiu, Peiqi
    Pan, Yupeng
    Niu, Yujuan
    Sun, Liang
    Pan, Zizhao
    Liu, Yuqi
    Tan, Li
    Xu, Xinwei
    Xu, Chen
    Luo, Guangfu
    Wang, Qing
    Wang, Hong
    ADVANCED MATERIALS, 2023, 35 (20)
  • [9] High-temperature oxidation of magnetron-sputtered Cr-N-coated steels
    Lee, DB
    Jang, YD
    Myung, HS
    Han, JG
    THIN SOLID FILMS, 2006, 506 : 369 - 372
  • [10] Crosslinked dielectric materials for high-temperature capacitive energy storage
    Tang, Yadong
    Xu, Wenhan
    Niu, Sen
    Zhang, Zhicheng
    Zhang, Yunhe
    Jiang, Zhenhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (16) : 10000 - 10011