Finite-size scaling of the random-field Ising model above the upper critical dimension

被引:8
|
作者
Fytas, Nikolaos G. [1 ]
Martin-Mayor, Victor [2 ,3 ]
Parisi, Giorgio [4 ,5 ]
Picco, Marco [6 ,7 ]
Sourlas, Nicolas [8 ,9 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, England
[2] Univ Complutense, Dept Fis Teor 1, Madrid 28040, Spain
[3] Inst Biocomp & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
[4] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy
[5] CNR, Sez Roma 1, INFN, IPCF, Ple A Moro 2, I-00185 Rome, Italy
[6] Sorbonne Univ, Lab Phys Theor & Hautes Energies, UMR 7589, 4 Pl Jussieu, F-75252 Paris 05, France
[7] CNRS, 4 Pl Jussieu, F-75252 Paris 05, France
[8] Univ Paris 06, Ecole Normale Super, Lab Phys Theor, CNRS,Unite Mixte Rech,PARIS VI, 24 Rue Lhomond, F-75231 Paris 05, France
[9] Univ Paris 06, Ecole Normale Super, PARIS VI, 24 Rue Lhomond, F-75231 Paris 05, France
基金
英国工程与自然科学研究理事会;
关键词
CRITICAL EXPONENTS; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; UNIVERSALITY; HYSTERESIS; STATE;
D O I
10.1103/PhysRevE.108.044146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D=7, i.e., above its upper critical dimension D-u=6, by employing extensive ground-state numerical simulations. Our results confirm the hypothesis that at dimensions D>D-u, linear length scale L should be replaced in finite-size scaling expressions by the effective scale L-eff=L-D/Du. Via a fitted version of the quotients method that takes this modification, but also subleading scaling corrections into account, we compute the critical point of the transition for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates that this modified version of finite-size scaling is successful also in the context of the random-field problem.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] FINITE-SIZE SCALING FOR THE ISING MODEL ABOVE THE UPPER CRITICAL DIMENSION
    Honchar, Yu.
    Berche, B.
    Holovatch, Yu.
    Kenna, R.
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (01):
  • [2] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [3] Finite-size scaling above the upper critical dimension revisited:: the case of the five-dimensional Ising model
    Luijten, E
    Binder, K
    Blöte, HWJ
    EUROPEAN PHYSICAL JOURNAL B, 1999, 9 (02): : 289 - 297
  • [4] Finite-size scaling above the upper critical dimension revisited: the case of the five-dimensional Ising model
    E. Luijten
    K. Binder
    H.W.J. Blöte
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 9 : 289 - 297
  • [5] Finite-size scaling of the correlation length above the upper critical dimension in the five-dimensional Ising model
    Jones, JL
    Young, AP
    PHYSICAL REVIEW B, 2005, 71 (17)
  • [6] Finite-size scaling in the φ4 theory above the upper critical dimension
    Chen, XS
    Dohm, V
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03): : 529 - 542
  • [7] Violations of Hyperscaling in Finite-Size Scaling above the Upper Critical Dimension
    Young, A. Peter
    ENTROPY, 2024, 26 (06)
  • [8] Failure of universal finite-size scaling above the upper critical dimension
    Chen, XS
    Dohm, V
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 251 (3-4) : 439 - 451
  • [9] Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
    Flores-Sola, Emilio J.
    Berche, Bertrand
    Kenna, Ralph
    Weigel, Martin
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (01): : 1 - 8
  • [10] Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
    Emilio J. Flores-Sola
    Bertrand Berche
    Ralph Kenna
    Martin Weigel
    The European Physical Journal B, 2015, 88