Topological invariants in quantum walks

被引:3
|
作者
Grudka, Andrzej [1 ]
Karczewski, Marcin [2 ]
Kurzynski, Pawel [1 ]
Wojcik, Jan [3 ]
Wojcik, Antoni [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys, PL-61614 Poznan, Poland
[2] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80309 Gdansk, Poland
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
PHASES; MATTER;
D O I
10.1103/PhysRevA.107.032201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discrete-time quantum walks (DTQWs) provide a convenient platform for a realization of many topological phases in noninteracting systems. They often offer more possibilities than systems with a static Hamiltonian. Nevertheless, researchers are still looking for DTQW symmetries protecting topological phases and for definitions of appropriate topological invariants. Although the majority of DTQW studies on this topic focus on the so-called split-step quantum walk, two distinct topological phases can be observed in more basic models. Here we infer topological properties of the basic DTQWs directly from the mapping of the Brillouin zone to the Bloch Hamiltonian. We show that for translation-symmetric systems they can be characterized by a homotopy relative to special points. We also propose a topological invariant corresponding to this concept. This invariant indicates the number of edge states at the interface between two distinct phases.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Topological quantum walks in cavity-based quantum networks
    Ya Meng
    Feng Mei
    Gang Chen
    Suo-Tang Jia
    Quantum Information Processing, 2020, 19
  • [22] Topological invariants for fractional quantum hall states
    V. Gurarie
    A. M. Essin
    JETP Letters, 2013, 97 : 233 - 238
  • [23] Topological invariants from nonrestricted quantum groups
    Geer, Nathan
    Patureau-Mirand, Bertrand
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (06): : 3305 - 3363
  • [24] Quantum Hall conductivity and topological invariants.
    Reyes, A
    GEOMETRIC METHODS FOR QUANTUM FIELD THEORY, 2001, : 498 - 508
  • [25] Topological invariants for fractional quantum hall states
    Gurarie, V.
    Essin, A. M.
    JETP LETTERS, 2013, 97 (04) : 233 - 238
  • [26] Topological phenomena in quantum walks: elementary introduction to the physics of topological phases
    Takuya Kitagawa
    Quantum Information Processing, 2012, 11 : 1107 - 1148
  • [27] Topological phenomena in quantum walks: elementary introduction to the physics of topological phases
    Kitagawa, Takuya
    QUANTUM INFORMATION PROCESSING, 2012, 11 (05) : 1107 - 1148
  • [28] Quantum Optics Measurement Scheme for Quantum Geometry and Topological Invariants
    Lysne, Markus
    Schueler, Michael
    Werner, Philipp
    PHYSICAL REVIEW LETTERS, 2023, 131 (15)
  • [29] Topological Protection of Path Entanglement in Photonic Quantum Walks
    Rechtsman, Mikael C.
    Lumer, Yaakov
    Plotnik, Yonatan
    Perez-Leija, Armando
    Szameit, Alexander
    Segev, Mordechai
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [30] Topological phases and delocalization of quantum walks in random environments
    Obuse, Hideaki
    Kawakami, Norio
    PHYSICAL REVIEW B, 2011, 84 (19)