Quantum Optics Measurement Scheme for Quantum Geometry and Topological Invariants

被引:4
|
作者
Lysne, Markus [1 ]
Schueler, Michael [1 ,2 ]
Werner, Philipp [1 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[2] Paul Scherrer Inst, Lab Mat Simulat, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
TRANSITION;
D O I
10.1103/PhysRevLett.131.156901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how a quantum optical measurement scheme based on heterodyne detection can be used to explore geometrical and topological properties of condensed matter systems. Considering a 2D material placed in a cavity with a coupling to the environment, we compute correlation functions of the photons exiting the cavity and relate them to the hybrid light-matter state within the cavity. Different polarizations of the intracavity field give access to all components of the quantum geometric tensor on contours in the Brillouin zone defined by the transition energy. Combining recent results based on the metric-curvature correspondence with the measured quantum metric allows us to characterize the topological phase of the material. Moreover, in systems where Sz is a good quantum number, the procedure also allows us to extract the spin Chern number. As an interesting application, we consider a minimal model for twisted bilayer graphene at the magic angle, and discuss the feasibility of extracting the Euler number.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] INVARIANTS IN QUANTUM GEOMETRY
    Lim, Adrian P. C.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 87 - 105
  • [2] Invariants of topological quantum mechanics
    Mekhfi, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (08) : 1709 - 1718
  • [3] Topological invariants in quantum walks
    Grudka, Andrzej
    Karczewski, Marcin
    Kurzynski, Pawel
    Wojcik, Jan
    Wojcik, Antoni
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [4] QUANTUM MEASUREMENT IN QUANTUM OPTICS
    KIMBLE, HJ
    CARNAL, O
    HU, Z
    MABUCHI, H
    POLZIK, ES
    THOMPSON, RJ
    TURCHETTE, QA
    FUNDAMENTAL PROBLEMS IN QUANTUM THEORY: A CONFERENCE HELD IN HONOR OF PROFESSOR JOHN A. WHEELER, 1995, 755 : 87 - 90
  • [5] A topological quantum optics interface
    Barik, Sabyasachi
    Karasahin, Aziz
    Flower, Christopher
    Cai, Tao
    Miyake, Hirokazu
    DeGottardi, Wade
    Hafezi, Mohammad
    Waks, Edo
    SCIENCE, 2018, 359 (6376) : 666 - 668
  • [6] Quantum mechanical symmetries and topological invariants
    Samani, KA
    Mostafazadeh, A
    NUCLEAR PHYSICS B, 2001, 595 (1-2) : 467 - 492
  • [7] GEOMETRY OF QUANTUM VORTICES AND LINK INVARIANTS
    PENNA, V
    SPERA, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (11-12): : 2209 - 2216
  • [8] Quantum topological invariants, gravitational instantons and the topological embedding
    Anselmi, D
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (08) : 2031 - 2047
  • [9] Topological quantum scheme based on quantum walk
    Kwan, Andis Chi Tung
    Li, Xiangdong
    Leung, Lin
    Ansheld, Michael
    QUANTUM INFORMATION AND COMPUTATION V, 2007, 6573
  • [10] Quantum geometry of topological gravity
    Ambjorn, J
    Anagnostopoulos, KN
    Ichihara, T
    Jensen, L
    Kawamoto, N
    Watabiki, Y
    Yotsuji, K
    PHYSICS LETTERS B, 1997, 397 (3-4) : 177 - 184