Quantum Optics Measurement Scheme for Quantum Geometry and Topological Invariants

被引:4
|
作者
Lysne, Markus [1 ]
Schueler, Michael [1 ,2 ]
Werner, Philipp [1 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[2] Paul Scherrer Inst, Lab Mat Simulat, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
TRANSITION;
D O I
10.1103/PhysRevLett.131.156901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how a quantum optical measurement scheme based on heterodyne detection can be used to explore geometrical and topological properties of condensed matter systems. Considering a 2D material placed in a cavity with a coupling to the environment, we compute correlation functions of the photons exiting the cavity and relate them to the hybrid light-matter state within the cavity. Different polarizations of the intracavity field give access to all components of the quantum geometric tensor on contours in the Brillouin zone defined by the transition energy. Combining recent results based on the metric-curvature correspondence with the measured quantum metric allows us to characterize the topological phase of the material. Moreover, in systems where Sz is a good quantum number, the procedure also allows us to extract the spin Chern number. As an interesting application, we consider a minimal model for twisted bilayer graphene at the magic angle, and discuss the feasibility of extracting the Euler number.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] CAVITY QUANTUM OPTICS AND THE QUANTUM MEASUREMENT PROCESS
    MEYSTRE, P
    PROGRESS IN OPTICS, 1992, 30 : 261 - 355
  • [12] QUANTUM OPTICS Topological data analysis
    Graydon, Oliver
    NATURE PHOTONICS, 2018, 12 (04) : 189 - 189
  • [13] QUANTUM MEASUREMENT AND GEOMETRY
    WHEELER, JT
    PHYSICAL REVIEW D, 1990, 41 (02): : 431 - 441
  • [14] TOPOLOGICAL QUANTUM-FIELD THEORY AND INVARIANTS OF GRAPHS FOR QUANTUM GROUPS
    BELIAKOVA, A
    DURHUUS, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (02) : 395 - 429
  • [15] Quantum computing topological invariants of two-dimensional quantum matter
    Niedermeier, Marcel
    Nairn, Marc
    Flindt, Christian
    Lado, Jose L.
    Physical Review Research, 2024, 6 (04):
  • [16] Topological invariants for fractional quantum hall states
    V. Gurarie
    A. M. Essin
    JETP Letters, 2013, 97 : 233 - 238
  • [17] Topological invariants from nonrestricted quantum groups
    Geer, Nathan
    Patureau-Mirand, Bertrand
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (06): : 3305 - 3363
  • [18] Quantum Hall conductivity and topological invariants.
    Reyes, A
    GEOMETRIC METHODS FOR QUANTUM FIELD THEORY, 2001, : 498 - 508
  • [19] Topological invariants for fractional quantum hall states
    Gurarie, V.
    Essin, A. M.
    JETP LETTERS, 2013, 97 (04) : 233 - 238
  • [20] PHASE MEASUREMENT IN QUANTUM OPTICS
    HRADIL, Z
    QUANTUM OPTICS, 1992, 4 (02): : 93 - 108