On the normalized distance laplacian eigenvalues of graphs

被引:1
|
作者
Ganie, Hilal A. [1 ]
Rather, Bilal Ahmad [2 ]
Das, Kinkar Chandra [3 ]
机构
[1] JK Govt, Dept Sch Educ, Srinagar, Jammu & Kashmir, India
[2] United Arab Emirates Univ, Coll Sci, Math Sci Dept, Abu Dhabi 15551, U Arab Emirates
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Graph; Normalized distance laplacian matrix; Energy; Diameter; Wiener index; RANDIC INDEX; ENERGY; SPECTRUM; MATRIX;
D O I
10.1016/j.amc.2022.127615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normalized distance Laplacian matrix (Dc-matrix) of a connected graph Gamma is defined by Dc(Gamma)= I- T r(Gamma)-1 / 2D(Gamma)T r(Gamma)-1 / 2, where D(Gamma) is the distance matrix and T r(Gamma) is the diagonal matrix of the vertex transmissions in Gamma. In this article, we present interest-ing spectral properties of Dc(Gamma)-matrix. We characterize the graphs having exactly two distinct Dc-eigenvalues which in turn solves a conjecture proposed in [26]. We charac-terize the complete multipartite graphs with three distinct Dc-eigenvalues. We present the bounds for the Dc-spectral radius and the second smallest eigenvalue of Dc(Gamma)-matrix and identify the candidate graphs attaining them. We also identify the classes of graphs whose second smallest Dc-eigenvalue is 1 and relate it with the distance spectrum of such graphs. Further, we introduce the concept of the trace norm (the normalized distance Laplacian energy DcE(Gamma) of Gamma) of I- Dc(Gamma). We obtain some bounds and characterize the corre-sponding extremal graphs.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On the first two largest distance Laplacian eigenvalues of unicyclic graphs
    Lin, Hongying
    Du, Zhibin
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 289 - 307
  • [42] On graphs with distance Laplacian eigenvalues of multiplicity n-4
    Khan, Saleem
    Pirzada, S.
    Somasundaram, A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (03) : 282 - 286
  • [43] Characterization of extremal graphs from distance signless Laplacian eigenvalues
    Lin, Huiqiu
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 500 : 77 - 87
  • [44] COMPUTING THE RECIPROCAL DISTANCE SIGNLESS LAPLACIAN EIGENVALUES AND ENERGY OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ramane, H. S.
    MATEMATICHE, 2019, 74 (01): : 49 - 73
  • [45] Distance between the spectra of graphs with respect to normalized Laplacian spectra
    Afkhami, Mojgan
    Hassankhani, Mehdi
    Khashyarmanesh, Kazem
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (02) : 227 - 234
  • [46] Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    Altindag, S. B. Bozkurt
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 259 - 271
  • [47] The normalized distance Laplacian
    Reinhart, Carolyn
    arXiv, 2019,
  • [48] Bounding the Sum of Powers of Normalized Laplacian Eigenvalues of Graphs through Majorization Methods
    Bianchi, Monica
    Cornaro, Alessandra
    Luis Palacios, Jose
    Torriero, Anna
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 707 - 716
  • [49] The normalized distance Laplacian
    Reinhart, Carolyn
    SPECIAL MATRICES, 2021, 9 (01): : 1 - 18
  • [50] Limit points for normalized Laplacian eigenvalues
    Kirkland, Steve
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2006, 15 : 337 - 344