On the normalized distance laplacian eigenvalues of graphs

被引:1
|
作者
Ganie, Hilal A. [1 ]
Rather, Bilal Ahmad [2 ]
Das, Kinkar Chandra [3 ]
机构
[1] JK Govt, Dept Sch Educ, Srinagar, Jammu & Kashmir, India
[2] United Arab Emirates Univ, Coll Sci, Math Sci Dept, Abu Dhabi 15551, U Arab Emirates
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Graph; Normalized distance laplacian matrix; Energy; Diameter; Wiener index; RANDIC INDEX; ENERGY; SPECTRUM; MATRIX;
D O I
10.1016/j.amc.2022.127615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normalized distance Laplacian matrix (Dc-matrix) of a connected graph Gamma is defined by Dc(Gamma)= I- T r(Gamma)-1 / 2D(Gamma)T r(Gamma)-1 / 2, where D(Gamma) is the distance matrix and T r(Gamma) is the diagonal matrix of the vertex transmissions in Gamma. In this article, we present interest-ing spectral properties of Dc(Gamma)-matrix. We characterize the graphs having exactly two distinct Dc-eigenvalues which in turn solves a conjecture proposed in [26]. We charac-terize the complete multipartite graphs with three distinct Dc-eigenvalues. We present the bounds for the Dc-spectral radius and the second smallest eigenvalue of Dc(Gamma)-matrix and identify the candidate graphs attaining them. We also identify the classes of graphs whose second smallest Dc-eigenvalue is 1 and relate it with the distance spectrum of such graphs. Further, we introduce the concept of the trace norm (the normalized distance Laplacian energy DcE(Gamma) of Gamma) of I- Dc(Gamma). We obtain some bounds and characterize the corre-sponding extremal graphs.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] ON THE SUM OF THE POWERS OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Pirzada, S.
    Ganie, Hilal A.
    Alhevaz, A.
    Baghipur, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1143 - 1163
  • [32] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [33] Proof of conjectures on the distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 100 - 115
  • [34] On the distribution of eigenvalues of the reciprocal distance Laplacian matrix of graphs
    Pirzada, S.
    Khan, Saleem
    FILOMAT, 2023, 37 (23) : 7973 - 7980
  • [35] Bounds for peripheral distance signless Laplacian eigenvalues of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    Ramane, H. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [36] Distance between the normalized Laplacian spectra of two graphs
    Das, Kinkar Ch.
    Sun, Shaowei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 305 - 321
  • [37] ON THE DISTANCE AND DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS AND THE SMALLEST GERSGORIN DISC
    Atik, Fouzul
    Panigrahi, Pratima
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 191 - 204
  • [38] On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups
    Rather, Bilal A.
    Pirzada, S.
    Chishti, T. A.
    Alghamdi, Ahmad M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [39] Normalized Laplacian Eigenvalues of Hypergraphs
    Xu, Leyou
    Zhou, Bo
    GRAPHS AND COMBINATORICS, 2024, 40 (05)
  • [40] SOME INEQUALITIES INVOLVING THE DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Alhevaz, Abdollah
    Baghipur, Maryam
    Pirzada, Shariefuddin
    Shang, Yilun
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (01) : 9 - 29