On the spectral radius of uniform weighted hypergraph

被引:2
|
作者
Sun, Rui [1 ]
Wang, Wen-Huan [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
k-Uniform weighted hypergraph; adjacency tensor; Laplacian tensor; signless Laplacian tensor; spectrum; LAPLACIAN H-EIGENVALUES; SIGNLESS LAPLACIAN; SUPERTREES; ADJACENCY; TENSOR;
D O I
10.1142/S1793830922500677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q(k), (n) be the set of the connected k-uniform weighted hypergraphs with n vertices, where k, n >= 3. For a hypergraph G. Q(k),n, let A(G), L(G) and Q(G) be its adjacency tensor, Laplacian tensor and signless Laplacian tensor, respectively. The spectral radii of A(G) and Q(G) are investigated. Some basic properties of the H-eigenvalue, the H(+)eigenvalue and the H++-eigenvalue of A(G), L(G) and Q(G) are presented. Several lower and upper bounds of the H-eigenvalue, the H+-eigenvalue and the H++-eigenvalue for A(G), L(G) and Q(G) are established. The largest H+-eigenvalue of L(G) and the smallest H+-eigenvalue of Q(G) are characterized. A relationship among the H-eigenvalues of L(G), Q(G) and A(G) is also given.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS
    Sorgun, S.
    Buyukkose, S.
    Ozarslan, H. S.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (05): : 517 - 524
  • [42] Distance (signless) Laplacian spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Wang, Yanna
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 271 - 293
  • [43] The spectral radius and domination number in linear uniform hypergraphs
    Liying Kang
    Wei Zhang
    Erfang Shan
    Journal of Combinatorial Optimization, 2021, 42 : 581 - 592
  • [44] The spectral radius and domination number in linear uniform hypergraphs
    Kang, Liying
    Zhang, Wei
    Shan, Erfang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (03) : 581 - 592
  • [45] The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs
    Duan, Cunxiang
    Wang, Ligong
    Xiao, Peng
    Li, Xihe
    FILOMAT, 2019, 33 (15) : 4733 - 4745
  • [46] A sharp upper bound on the spectral radius of weighted graphs
    Das, Kinkar Ch.
    Bapat, R. B.
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3180 - 3186
  • [47] The new upper bounds on the spectral radius of weighted graphs
    Sorgun, Sezer
    Buyukkose, Serife
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5231 - 5238
  • [48] A note on upper bounds for the spectral radius of weighted graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 392 - 397
  • [49] Spectral radius algebras, Deddens algebras, and weighted shifts
    Petrovic, Srdjan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 513 - 522
  • [50] On the spectral radius and energy of the weighted adjacency matrix of a graph
    Xu, Baogen
    Li, Shuchao
    Yu, Rong
    Zhao, Qin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 340 : 156 - 163