On the spectral radius of uniform weighted hypergraph

被引:2
|
作者
Sun, Rui [1 ]
Wang, Wen-Huan [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
k-Uniform weighted hypergraph; adjacency tensor; Laplacian tensor; signless Laplacian tensor; spectrum; LAPLACIAN H-EIGENVALUES; SIGNLESS LAPLACIAN; SUPERTREES; ADJACENCY; TENSOR;
D O I
10.1142/S1793830922500677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q(k), (n) be the set of the connected k-uniform weighted hypergraphs with n vertices, where k, n >= 3. For a hypergraph G. Q(k),n, let A(G), L(G) and Q(G) be its adjacency tensor, Laplacian tensor and signless Laplacian tensor, respectively. The spectral radii of A(G) and Q(G) are investigated. Some basic properties of the H-eigenvalue, the H(+)eigenvalue and the H++-eigenvalue of A(G), L(G) and Q(G) are presented. Several lower and upper bounds of the H-eigenvalue, the H+-eigenvalue and the H++-eigenvalue for A(G), L(G) and Q(G) are established. The largest H+-eigenvalue of L(G) and the smallest H+-eigenvalue of Q(G) are characterized. A relationship among the H-eigenvalues of L(G), Q(G) and A(G) is also given.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On the α-spectral radius of the k-uniform supertrees
    Liu, Chang
    Li, Jianping
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (06)
  • [32] UNIFORM CONTINUITY OF SPECTRAL RADIUS IN BANACH ALGEBRAS
    PTAK, V
    ZEMANEK, J
    MANUSCRIPTA MATHEMATICA, 1977, 20 (02) : 177 - 189
  • [33] Lower bounds for the Aα-spectral radius of uniform hypergraphs
    Zhang, Peng-Li
    Zhang, Xiao-Dong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 631 : 308 - 327
  • [34] Uniform spectral radius and compact Gelfand transform
    Aleman, A
    Dahlner, A
    STUDIA MATHEMATICA, 2006, 172 (01) : 25 - 46
  • [35] A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning
    Ghoshdastidar, Debarghya
    Dukkipati, Ambedkar
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 400 - 409
  • [36] The maximum spectral radius of the weighted bicyclic hypergraphs
    Wang, Wen-Huan
    Yu, Lou-Jun
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (10): : 1590 - 1611
  • [37] MINIMUM SPECTRAL-RADIUS OF A WEIGHTED GRAPH
    POLJAK, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 171 : 53 - 63
  • [38] An Approach to Bounding the Spectral Radius of a Weighted Digraph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2018, 232 (6) : 903 - 916
  • [39] On the signless Laplacian spectral radius of weighted digraphs
    Xi, Weige
    Wang, Ligong
    DISCRETE OPTIMIZATION, 2019, 32 : 63 - 72
  • [40] The Spectral Radius of Maximum Weighted Unicyclic Graph
    Tao, Xingming
    Huang, Qiongxiang
    Liu, Fenjin
    ARS COMBINATORIA, 2014, 116 : 161 - 170