Compactness and stable regularity in multiscale homogenization

被引:0
|
作者
Niu, Weisheng [1 ]
Zhuge, Jinping [2 ]
机构
[1] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Peoples R China
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
PERIODIC HOMOGENIZATION; CONVERGENCE-RATES; CORRECTORS;
D O I
10.1007/s00208-022-02378-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop some new techniques to study the multiscale elliptic equations in the form of -div(A(epsilon) del u(epsilon)) = 0, where A(epsilon) (x) = A( x, x/epsilon(1), ..., x/epsilon(n)) is an n-scale oscillating periodic coefficient matrix, and (epsilon(i))(1 <= i <= n) are scale parameters. We show that the C-a-Holder continuity with any alpha is an element of (0, 1) for the weak solutions is stable, namely, the constant in the estimate is uniform for arbitrary (epsilon(1), epsilon(2), ..., epsilon(n)) is an element of (0, 1](n) and particularly is independent of the ratios between epsilon(i)'s. The proof uses an upgraded method of compactness, involving a scale-reduction theorem by H-convergence. The Lipschitz estimate for arbitrary (epsilon(i))(1 <= i <= n) still remains open. However, for special laminate structures, i.e., A(e) (x) = A( x, x(1)/epsilon(1), ..., x(d)/epsilon(d)), we show that the Lipschitz estimate is stable for arbitrary (epsilon(1), epsilon(2),..., epsilon(d)) is an element of (0, 1](d). This is proved by a technique of reperiodization.
引用
收藏
页码:95 / 95
页数:1
相关论文
共 50 条
  • [41] A NEURAL NETWORK APPROACH FOR HOMOGENIZATION OF MULTISCALE PROBLEMS
    Han, Jihun
    Lee, Yoonsang
    MULTISCALE MODELING & SIMULATION, 2023, 21 (02): : 716 - 734
  • [42] The edge smoothed finite element for multiscale homogenization
    Henys, Petr
    Pokatilov, Gleb
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 70 - 77
  • [43] Homogenization of a multiscale multi-continuum system
    Park, Jun Sur Richard
    Hoang, Viet Ha
    APPLICABLE ANALYSIS, 2022, 101 (04) : 1271 - 1298
  • [44] A Multiscale Homogenization Approach for Architectured Knitted Textiles
    Liu, D.
    Koric, S.
    Kontsos, A.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2019, 86 (11):
  • [45] Multiscale convergence and reiterated homogenization of parabolic problems
    Holmbom A.
    Svanstedt N.
    Wellander N.
    Applications of Mathematics, 2005, 50 (2) : 131 - 151
  • [46] Multiscale finite element method for numerical homogenization
    Allaire, G
    Brizzi, R
    MULTISCALE MODELING & SIMULATION, 2005, 4 (03): : 790 - 812
  • [47] On multiscale homogenization problems in boundary layer theory
    Amirat, Youcef
    Chechkin, Gregory A.
    Romanov, Maxim
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 475 - 502
  • [48] On multiscale homogenization problems in boundary layer theory
    Youcef Amirat
    Gregory A. Chechkin
    Maxim Romanov
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 475 - 502
  • [49] Multiscale homogenization of convex functionals with discontinuous integrand
    Barchiesi, Marco
    JOURNAL OF CONVEX ANALYSIS, 2007, 14 (01) : 205 - 226
  • [50] A multiscale computational method with time and space homogenization
    Ladeveze, P
    Nouy, A
    COMPTES RENDUS MECANIQUE, 2002, 330 (10): : 683 - 689