The edge smoothed finite element for multiscale homogenization

被引:0
|
作者
Henys, Petr [1 ]
Pokatilov, Gleb [1 ]
机构
[1] Tech Univ Liberec, Inst New Technol & Appl Informat, Fac Mechatron Informat & Interdisciplinary Studies, Studentska 1402-2, Liberec 46117, Czech Republic
关键词
Multiscale; Linear elasticity; Computational homogenization; Smoothed finite element; COMPUTATIONAL HOMOGENIZATION; COMPOSITE-MATERIALS; BOUNDARY-CONDITIONS; ES-FEM;
D O I
10.1016/j.enganabound.2023.07.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computational homogenization provides an effective method for the design of material microstructures and the exploration of new materials with superior performances. Nevertheless, the homogenization method often relies on finite element (FE) discretization, which may act as a computational constriction in terms of its efficiency and accuracy. The smoothed FE variant exhibits attractive mathematical/numerical properties, which are further explored in this study. We combined edge-smoothed finite elements with periodic boundary conditions treated via the Nitsche and mortar methods on a non-matching boundary mesh aimed at improving the estimation of the homogenized elasticity properties. The convergence and size effect benchmarks revealed that the smoothed finite element method provides for greater accuracy and efficiency than does regular FE.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 50 条
  • [1] Multiscale finite element method for numerical homogenization
    Allaire, G
    Brizzi, R
    MULTISCALE MODELING & SIMULATION, 2005, 4 (03): : 790 - 812
  • [2] Adaptive finite element heterogeneous multiscale method for homogenization problems
    Abdulle, A.
    Nonnenmacher, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (37-40) : 2710 - 2726
  • [3] A short and versatile finite element multiscale code for homogenization problems
    Abdulle, Assyr
    Nonnenmacher, Achim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) : 2839 - 2859
  • [4] Finite Element Computational Homogenization of Nonlinear Multiscale Materials in Magnetostatics
    Niyonzima, I.
    Sabariego, R. V.
    Dular, P.
    Geuzaine, C.
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 587 - 590
  • [5] Numerical homogenization for incompressible materials using selective smoothed finite element method
    Li, Eric
    Zhang, Zhongpu
    Chang, C. C.
    Liu, G. R.
    Li, Q.
    COMPOSITE STRUCTURES, 2015, 123 : 216 - 232
  • [6] Analysis of the multiscale finite element method for nonlinear and random homogenization problems
    Chen, Zhangxin
    Savchuk, Tatyana Y.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (01) : 260 - 279
  • [7] THE MULTISCALE FINITE ELEMENT METHOD WITH NONCONFORMING ELEMENTS FOR ELLIPTIC HOMOGENIZATION PROBLEMS
    Chen, Zhangxin
    Cui, Ming
    Savchuk, Tatyana Y.
    Yu, Xijun
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 517 - 538
  • [8] An edge-based smoothed finite element method for adaptive analysis
    Chen, L.
    Zhang, J.
    Zang, K. Y.
    Jiao, P. G.
    STRUCTURAL ENGINEERING AND MECHANICS, 2011, 39 (06) : 767 - 793
  • [9] The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains
    Patrick Henning
    Mario Ohlberger
    Numerische Mathematik, 2009, 113 : 601 - 629
  • [10] ANALYSIS OF THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR QUASILINEAR ELLIPTIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Vilmart, Gilles
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 513 - 536