Measuring China's GaR with the threshold quantile regression model

被引:0
|
作者
Xu, Qifa [1 ,2 ]
Xun, Aochen [1 ]
Jiang, Cuixia [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei, Peoples R China
[2] Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
GaR; economic growth; nonlinear relationship; threshold quantile regression;
D O I
10.1080/00036846.2023.2300769
中图分类号
F [经济];
学科分类号
02 ;
摘要
We extend the growth at risk (GaR) of Adrian et al. (2019) by considering the nonlinear nexus between macro-financial environment indexes and economic growth. In this extension, we use the threshold quantile regression model to investigate the nonlinear impact of five constructed macro-financial environment indexes on economic growth and measure China's GaR from 2021Q1 to 2021Q4. The empirical results show that the threshold effect does exist. Incorporating this nonlinear relationship significantly improves the accuracy of China's GaR measure in terms of smaller prediction loss.
引用
收藏
页码:9230 / 9234
页数:5
相关论文
共 50 条
  • [41] On Asymmetric Market Model with Heteroskedasticity and Quantile Regression
    Cathy W. S. Chen
    Muyi Li
    Nga T. H. Nguyen
    Songsak Sriboonchitta
    Computational Economics, 2017, 49 : 155 - 174
  • [42] An amalgamation of crisp and fuzzy quantile regression model
    Mustafa, Saima
    Basharat, Hina
    Akgul, Ali
    Shahzad, Mohsin
    Sayed, Abdelhamied Farrag
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (01): : 1 - 10
  • [43] Elastic net penalized quantile regression model
    Su, Meihong
    Wang, Wenjian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [44] Nonparametric estimation of an additive quantile regression model
    Horowitz, JL
    Lee, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1238 - 1249
  • [45] Bayesian bent line quantile regression model
    Li, Yi
    Hu, Zongyi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (17) : 3972 - 3987
  • [46] Model-Robust Designs for Quantile Regression
    Kong, Linglong
    Wiens, Douglas P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 233 - 245
  • [47] An alternative estimator for the censored quantile regression model
    Buchinsky, M
    Hahn, JY
    ECONOMETRICA, 1998, 66 (03) : 653 - 671
  • [48] A quantile regression forecasting model for ICT development
    Yu, Tiffany Hui-Kuang
    MANAGEMENT DECISION, 2014, 52 (07) : 1263 - 1272
  • [49] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    STATISTICS, 2017, 51 (06) : 1342 - 1358
  • [50] Jackknife Model Averaging for Composite Quantile Regression
    YOU Kang
    WANG Miaomiao
    ZOU Guohua
    Journal of Systems Science & Complexity, 2024, 37 (04) : 1604 - 1637