Bayesian bent line quantile regression model

被引:0
|
作者
Li, Yi [1 ]
Hu, Zongyi [1 ]
机构
[1] Hunan Univ, Coll Finance & Stat, Changsha, Peoples R China
关键词
Bent line; quantile regression; Bayesian method; SAMPLING METHODS;
D O I
10.1080/03610926.2019.1710750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article introduces a Bayesian estimating method for a bent line quantile regression model. Within the Bayesian framework, regression coefficients and threshold can be simultaneously estimated, addressing the problem of optimizing the loss function in frequentist approaches, while the statistical inference on the threshold is direct. Simulation studies and two real data examples show that the Bayesian method demonstrates better sample performance.
引用
收藏
页码:3972 / 3987
页数:16
相关论文
共 50 条
  • [1] A note on estimating the bent line quantile regression model
    Yanyang Yan
    Feipeng Zhang
    Xiaoying Zhou
    [J]. Computational Statistics, 2017, 32 : 611 - 630
  • [2] A note on estimating the bent line quantile regression model
    Yan, Yanyang
    Zhang, Feipeng
    Zhou, Xiaoying
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (02) : 611 - 630
  • [3] Bent line quantile regression via a smoothing technique
    Zhou, Xiaoying
    Zhang, Feipeng
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (03) : 216 - 228
  • [4] Bent-cable quantile regression model
    Zhang, Feipeng
    Zheng, Shenglin
    Zhou, Xiaoying
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (05) : 2000 - 2011
  • [5] Composite change point estimation for bent line quantile regression
    Liwen Zhang
    Huixia Judy Wang
    Zhongyi Zhu
    [J]. Annals of the Institute of Statistical Mathematics, 2017, 69 : 145 - 168
  • [6] Composite change point estimation for bent line quantile regression
    Zhang, Liwen
    Wang, Huixia Judy
    Zhu, Zhongyi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (01) : 145 - 168
  • [7] Bayesian model selection in ordinal quantile regression
    Alhamzawi, Rahim
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 68 - 78
  • [8] Bayesian analysis of a Tobit quantile regression model
    Yu, Keming
    Stander, Julian
    [J]. JOURNAL OF ECONOMETRICS, 2007, 137 (01) : 260 - 276
  • [9] Bayesian quantile regression
    Yu, KM
    Moyeed, RA
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) : 437 - 447
  • [10] Bayesian quantile regression model for claim count data
    Fuzi, Mohd Fadzli Mohd
    Jemain, Abdul Aziz
    Ismail, Noriszura
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2016, 66 : 124 - 137