Quantum algorithm for estimating largest eigenvalues

被引:1
|
作者
Nghiem, Nhat A. [1 ]
Wei, Tzu-Chieh [1 ,2 ,3 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Quantum algorithms; Quantum computation;
D O I
10.1016/j.physleta.2023.129138
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scientific computation involving numerical methods relies heavily on the manipulation of large matrices, including solving linear equations and finding eigenvalues and eigenvectors. Quantum algorithms have been developed to advance these computational tasks, and some have been shown to provide substantial speedup, such as factoring a large integer and solving linear equations. In this work, we leverage the techniques used in the Harrow-Hassidim-Llyod (HHL) algorithm for linear systems, the classical power, and the Krylov subsapce method to devise a simple quantum algorithm for estimating the largest eigenvalues in magnitude of a Hermitian matrix. Our quantum algorithm offers significant speedup with respect to the size of a given matrix over classical algorithms that solve the same problem.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] LARGEST EIGENVALUES OF TRUNCATED AVERAGING OPERATORS
    JANSSEN, AJEM
    PHILIPS JOURNAL OF RESEARCH, 1991, 45 (06) : 413 - 432
  • [22] ON THE SUM OF THE LARGEST EIGENVALUES OF A SYMMETRICAL MATRIX
    OVERTON, ML
    WOMERSLEY, RS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 41 - 45
  • [23] On the largest eigenvalues of trees with perfect matchings
    Wenshui Lin
    Xiaofeng Guo
    Journal of Mathematical Chemistry, 2007, 42 : 1057 - 1067
  • [24] Some bounds on the largest eigenvalues of graphs
    Li, Shuchao
    Tian, Yi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 326 - 332
  • [25] ON A THEOREM FOR ESTIMATING EIGENVALUES
    FUJITA, H
    KATO, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1958, 13 (02) : 215 - 219
  • [26] A PROCEDURE FOR ESTIMATING EIGENVALUES
    BAZLEY, NW
    FOX, DW
    JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (03) : 469 - &
  • [27] An algorithm for eigenvalues and eigenvectors of quaternion matrices in quaternionic quantum mechanics
    Jiang, TS
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) : 3334 - 3338
  • [28] Quantum Algorithm for Estimating Volumes of Convex Bodies
    Chakrabarti, Shouvanik
    Childs, Andrew M.
    Hung, Shih-Han
    Li, Tongyang
    Wang, Chunhao
    Wu, Xiaodi
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023, 4 (03):
  • [29] On the two largest Q-eigenvalues of graphs
    Wang, JianFeng
    Belardo, Francesco
    Huang, QiongXiang
    Borovicanin, Bojana
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2858 - 2866
  • [30] SOME RESULTS ON THE LARGEST AND LEAST EIGENVALUES OF GRAPHS
    Lin, Huiqiu
    Liu, Ruifang
    Shu, Jinlong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 670 - 682