SOME RESULTS ON THE LARGEST AND LEAST EIGENVALUES OF GRAPHS

被引:0
|
作者
Lin, Huiqiu [1 ]
Liu, Ruifang [2 ]
Shu, Jinlong [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[3] E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
来源
关键词
Spectral radius; Diameter; Matching number; Least eigenvalue; Quasi-tree graph; SPECTRAL-RADIUS; NUMBER; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a simple graph with vertex set V(G) = {v(1), v(2), . . . , v(n)} and edge set E(G). In this paper, first some sharp upper and lower bounds on the largest and least eigenvalues of graphs are given when vertices are removed. Some conjectures in [M. Aouchiche. Comparaison Automatisee dInvariants en Theorie des Graphes. Ph.D. Thesis, Ecole Polytechnique de Montreal, February 2006.] and [M. Aouchiche, G. Caporossi, and P. Hansen. Variable neighborhood search for extremal graphs, 20. Automated comparison of graph invariants. MATCH Commun. Math. Comput. Chem., 58:365384, 2007.] involving the spectral radius, diameter and matching number are also proved. Furthermore, the extremal graph which attains the minimum least eigenvalue among all quasi-tree graphs is characterized.
引用
收藏
页码:670 / 682
页数:13
相关论文
共 50 条
  • [1] Ordering graphs by their largest (least) Aα-eigenvalues
    Guo, Shu-Guang
    Zhang, Rong
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 7049 - 7056
  • [2] Some bounds on the largest eigenvalues of graphs
    Li, Shuchao
    Tian, Yi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 326 - 332
  • [3] Largest and smallest eigenvalues of matrices and some Hamiltonian properties of graphs
    Li, Rao
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 34 - 39
  • [4] SOME RESULTS INVOLVING THE Aα-EIGENVALUES FOR GRAPHS AND LINE GRAPHS
    da Silva, João Domingos G.
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G.C.
    arXiv,
  • [5] The second largest eigenvalues of some Cayley graphs on alternating groups
    Huang, Xueyi
    Huang, Qiongxiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (01) : 99 - 111
  • [6] The second largest eigenvalues of some Cayley graphs on alternating groups
    Xueyi Huang
    Qiongxiang Huang
    Journal of Algebraic Combinatorics, 2019, 50 : 99 - 111
  • [7] Some results involving the Aα - eigenvalues for graphs and line graphs
    da Silva Junior, Joao Domingos G.
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G. C.
    SPECIAL MATRICES, 2024, 12 (01):
  • [8] On the sum of the largest Aα-eigenvalues of graphs
    Lin, Zhen
    AIMS MATHEMATICS, 2022, 7 (08): : 15064 - 15074
  • [9] On the second largest Aα-eigenvalues of graphs
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 : 343 - 358
  • [10] Some results on the Laplacian eigenvalues of unicyclic graphs
    Li, Jianxi
    Shiu, Wai Chee
    Chan, Wai Hong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2080 - 2093