ANOMALOUS SCALING REGIME FOR ONE-DIMENSIONAL MOTT VARIABLE-RANGE HOPPING

被引:0
|
作者
Croydon, David A. [1 ]
Fukushima, Ryoki
Junk, Stefan [2 ,3 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Japan
[3] Tohoku Univ, Adv Inst Mat Res, Sendai, Japan
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 05期
关键词
Random walk in random environment; disordered media; sub-diffusivity; Mott variable-range hopping; Bouchaud trap model; bi-generalized diffusion process; RANDOM-WALKS; INVARIANCE-PRINCIPLE; LIMITS;
D O I
10.1214/22-AAP1915
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive an anomalous, sub-diffusive scaling limit for a one-dimensional version of the Mott random walk. The limiting process can be viewed heuristically as a one-dimensional diffusion with an absolutely continuous speed measure and a discontinuous scale function, as given by a two-sided stable subordinator. Corresponding to intervals of low conductance in the discrete model, the discontinuities in the scale function act as barriers off which the limiting process reflects for some time before crossing. We also discuss how, by incorporating a Bouchaud trap model element into the setting, it is possible to combine this "blocking" mechanism with one of "trapping". Our proof relies on a recently developed theory that relates the convergence of processes to that of associated resistance metric measure spaces.
引用
收藏
页码:4044 / 4090
页数:47
相关论文
共 50 条
  • [31] Numerical Simulations of Variable-Range Hopping
    Ortuño, Miguel
    Estellés-Duart, Francisco
    Somoza, Andrés M.
    Physica Status Solidi (B) Basic Research, 2022, 259 (01):
  • [32] ACOUSTOELECTRIC EFFECT IN SYSTEMS WITH LOCALIZED STATES AT VARIABLE-RANGE HOPPING CONDUCTIVITY REGIME
    BOKACHEVA, LS
    GALPERIN, YM
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1992, 26 (11): : 1127 - 1128
  • [33] Variable-range hopping conductivity in quasicrystals
    Rivier, N
    Durand, M
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 : 584 - 587
  • [34] VARIABLE RANGE HOPPING NEAR FERMI ENERGY - ONE-DIMENSIONAL SYSTEMS
    MASCHKE, K
    OVERHOF, H
    THOMAS, P
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1974, 61 (02): : 621 - 627
  • [35] Quantum interference magnetoconductance of polycrystalline germanium films in the variable-range hopping regime
    Li, Zhaoguo
    Peng, Liping
    Zhang, Jicheng
    Li, Jia
    Zeng, Yong
    Zhan, Zhiqiang
    Wu, Weidong
    PHILOSOPHICAL MAGAZINE, 2018, 98 (16) : 1525 - 1536
  • [36] Dependence of conductivity on thickness within the variable-range hopping regime for Coulomb glasses
    Caravaca, M.
    Fernandez-Martinez, M.
    Soto, A.
    RESULTS IN PHYSICS, 2017, 7 : 134 - 135
  • [37] THE EFFECT OF A WEAK MAGNETIC-FIELD ON THE VARIABLE-RANGE HOPPING REGIME IN GAAS
    BENZAQUEN, M
    WALSH, D
    MAZURUK, K
    AITOUALI, A
    WEISSFLOCH, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (36): : 6143 - 6152
  • [38] 2-DIMENSIONAL VARIABLE-RANGE HOPPING IN PLANAR CONJUGATED MACROMOLECULES
    COLSON, R
    NAGELS, P
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1978, 38 (05): : 503 - 514
  • [39] Screening of the Coulomb interaction in two-dimensional variable-range hopping
    Van, Keuls, F. W.
    Hu, X. L.
    Jiang, H. W.
    Dahm, A. J.
    Physical Review B: Condensed Matter, 56 (03):
  • [40] VARIABLE-RANGE HOPPING IN FINITE QUASI-2-DIMENSIONAL SYSTEMS
    LIEN, NV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 169 (01): : 131 - 139