ANOMALOUS SCALING REGIME FOR ONE-DIMENSIONAL MOTT VARIABLE-RANGE HOPPING

被引:0
|
作者
Croydon, David A. [1 ]
Fukushima, Ryoki
Junk, Stefan [2 ,3 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Japan
[3] Tohoku Univ, Adv Inst Mat Res, Sendai, Japan
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 05期
关键词
Random walk in random environment; disordered media; sub-diffusivity; Mott variable-range hopping; Bouchaud trap model; bi-generalized diffusion process; RANDOM-WALKS; INVARIANCE-PRINCIPLE; LIMITS;
D O I
10.1214/22-AAP1915
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive an anomalous, sub-diffusive scaling limit for a one-dimensional version of the Mott random walk. The limiting process can be viewed heuristically as a one-dimensional diffusion with an absolutely continuous speed measure and a discontinuous scale function, as given by a two-sided stable subordinator. Corresponding to intervals of low conductance in the discrete model, the discontinuities in the scale function act as barriers off which the limiting process reflects for some time before crossing. We also discuss how, by incorporating a Bouchaud trap model element into the setting, it is possible to combine this "blocking" mechanism with one of "trapping". Our proof relies on a recently developed theory that relates the convergence of processes to that of associated resistance metric measure spaces.
引用
收藏
页码:4044 / 4090
页数:47
相关论文
共 50 条
  • [21] Statistical Properties of Electric Potentials in a Variable-Range Hopping Regime
    Hayashi, Toshiaki
    Tokura, Yasuhiro
    Nishiguchi, Katsuhiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (03)
  • [22] Variable-range hopping and quantum creep in one dimension
    Nattermann, T
    Giamarchi, T
    Le Doussal, P
    PHYSICAL REVIEW LETTERS, 2003, 91 (05) : 566031 - 566034
  • [23] The velocity of 1d Mott variable-range hopping with external field
    Faggionato, Alessandra
    Gantert, Nina
    Salvi, Michele
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1165 - 1203
  • [24] Universal spin-induced magnetoresistance in the variable-range hopping regime
    Meir, Y
    EUROPHYSICS LETTERS, 1996, 33 (06): : 471 - 476
  • [25] Numerical Simulations of Variable-Range Hopping
    Ortuno, Miguel
    Estelles-Duart, Francisco
    Somoza, Andres M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (01):
  • [26] Memory effects, two color percolation, and the temperature dependence of Mott variable-range hopping
    Agam, Oded
    Aleiner, Igor L.
    PHYSICAL REVIEW B, 2014, 89 (22)
  • [27] VARIABLE-RANGE HOPPING CONDUCTION IN FILMS
    SHANTE, VKS
    PHYSICS LETTERS A, 1973, A 43 (03) : 249 - 250
  • [28] Variable-range hopping conductivity in InGaN
    Yildiz, A.
    Kasap, M.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 293 - +
  • [29] Scaling of current distributions in variable-range hopping transport on two- and three-dimensional lattices
    Pasveer, WF
    Bobbert, PA
    Huinink, HP
    Michels, MAJ
    PHYSICAL REVIEW B, 2005, 72 (17):
  • [30] Variable-range charge hopping in DNA
    Berlin, Yuri A.
    Ratner, Mark A.
    CHARGE MIGRATION IN DNA: PERSPECTIVES FROM PHYSICS, CHEMISTRY, AND BIOLOGY, 2007, : 45 - 61