ANOMALOUS SCALING REGIME FOR ONE-DIMENSIONAL MOTT VARIABLE-RANGE HOPPING

被引:0
|
作者
Croydon, David A. [1 ]
Fukushima, Ryoki
Junk, Stefan [2 ,3 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Japan
[3] Tohoku Univ, Adv Inst Mat Res, Sendai, Japan
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 05期
关键词
Random walk in random environment; disordered media; sub-diffusivity; Mott variable-range hopping; Bouchaud trap model; bi-generalized diffusion process; RANDOM-WALKS; INVARIANCE-PRINCIPLE; LIMITS;
D O I
10.1214/22-AAP1915
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive an anomalous, sub-diffusive scaling limit for a one-dimensional version of the Mott random walk. The limiting process can be viewed heuristically as a one-dimensional diffusion with an absolutely continuous speed measure and a discontinuous scale function, as given by a two-sided stable subordinator. Corresponding to intervals of low conductance in the discrete model, the discontinuities in the scale function act as barriers off which the limiting process reflects for some time before crossing. We also discuss how, by incorporating a Bouchaud trap model element into the setting, it is possible to combine this "blocking" mechanism with one of "trapping". Our proof relies on a recently developed theory that relates the convergence of processes to that of associated resistance metric measure spaces.
引用
收藏
页码:4044 / 4090
页数:47
相关论文
共 50 条
  • [1] DIFFUSIVITY IN ONE-DIMENSIONAL GENERALIZED MOTT VARIABLE-RANGE HOPPING MODELS
    Caputo, P.
    Faggionato, A.
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (04): : 1459 - 1494
  • [2] Einstein relation and linear response in one-dimensional Mott variable-range hopping
    Faggionato, Alessandra
    Gantert, Nina
    Salvi, Michele
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03): : 1477 - 1508
  • [3] VARIABLE-RANGE HOPPING IN FINITE ONE-DIMENSIONAL WIRES
    LEE, PA
    PHYSICAL REVIEW LETTERS, 1984, 53 (21) : 2042 - 2045
  • [4] Numerical studies of variable-range hopping in one-dimensional systems
    Rodin, A. S.
    Fogler, M. M.
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [5] Variable-range hopping of spin polarons: Magnetoresistance in a modified Mott regime
    Foygel, M
    Morris, RD
    Petukhov, AG
    PHYSICAL REVIEW B, 2003, 67 (13):
  • [6] NUMERICAL-CALCULATIONS OF VARIABLE-RANGE HOPPING IN ONE-DIMENSIONAL MOSFETS
    MCINNES, JA
    BUTCHER, PN
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28): : L921 - L925
  • [7] Quantum creep and variable-range hopping of one-dimensional interacting electrons
    Malinin, SV
    Nattermann, T
    Rosenow, B
    PHYSICAL REVIEW B, 2004, 70 (23) : 1 - 15
  • [8] NEW ASPECTS OF VARIABLE-RANGE HOPPING IN FINITE ONE-DIMENSIONAL WIRES
    SEROTA, RA
    KALIA, RK
    LEE, PA
    PHYSICAL REVIEW B, 1986, 33 (12): : 8441 - 8446
  • [9] Thermoelectric Effect in Mott Variable-Range Hopping
    Yamamoto, Takahiro
    Ogata, Masao
    Fukuyama, Hidetoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (04)
  • [10] Variable-range hopping in the critical regime
    Castner, TG
    PHYSICAL REVIEW B, 2000, 61 (24) : 16596 - 16609