Spectral radius and rainbow matchings of graphs

被引:2
|
作者
Guo, Mingyang [1 ]
Lu, Hongliang [1 ]
Ma, Xinxin [1 ]
Ma, Xiao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Matching; Rainbow matching; Spectral radius; SIZE;
D O I
10.1016/j.laa.2023.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n, m be integers such that 1 <= m <= (n - 2)/2 and let [n] = {1, ..., n}. Let G = {G1, . . . , G(m+1)} be a family of graphs on the same vertex set [n]. In this paper, we prove that if for any i is an element of [m + 1], the spectral radius of G(i) is not less than max{2m, 1/2 (m -1 + root(m - 1)(2 )+ 4m(n - m))}, then G admits a rainbow matching, i.e. a choice of disjoint edges e(i) is an element of Gi, unless G(1) = G(2) = ... = G(m+1) and G(1) is an element of {K2m+1 boolean OR (n -2m - 1)K-1, K-m V (n - m)K-1}.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 50 条
  • [31] Large matchings in bipartite graphs have a rainbow matching
    Kotlar, Daniel
    Ziv, Ran
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 38 : 97 - 101
  • [32] Large Rainbow Matchings in Edge-Coloured Graphs
    Kostochka, Alexandr
    Yancey, Matthew
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2): : 255 - 263
  • [33] On the spectral radius of unicyclic graphs
    Yu, AM
    Tian, F
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (51) : 97 - 109
  • [34] Spectral radius and Hamiltonicity of graphs
    Fiedler, Miroslav
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2170 - 2173
  • [35] Cleavages of graphs: the spectral radius
    de la Pena, Jose A.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07): : 641 - 649
  • [36] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [37] The Aα-spectral radius of dense graphs
    Liu, Muhuo
    Chen, Chaohui
    Guo, Shu-Guang
    Peng, Jiarong
    Chen, Tianyuan
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06): : 1044 - 1053
  • [38] THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 835 - 847
  • [39] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    arXiv, 2023,
  • [40] A note on the Aα-spectral radius of graphs
    Lin, Huiqiu
    Huang, Xing
    Xue, Jie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 430 - 437