On Laplacian Eigenvalues of Wheel Graphs

被引:0
|
作者
Alotaibi, Manal [1 ]
Alghamdi, Ahmad [2 ]
Alolaiyan, Hanan [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Mthemat, POB 2455, Riyadh 11451, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
Laplacian eigenvalues; wheel graph; Grone-Merris-Bai theorem; Brouwer's conjecture; symmetry of wheel graphs; automorphism group of graphs; FULLERENES; SPECTRA; INDEX; C60;
D O I
10.3390/sym15091737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider G to be a simple graph with n vertices and m edges, and L(G) to be a Laplacian matrix with Laplacian eigenvalues of & mu;1,& mu;2, horizontal ellipsis ,& mu;n=zero. Write Sk(G)= n-ary sumation i=1k & mu;i as the sum of the k-largest Laplacian eigenvalues of G, where k & ISIN;{1,2, horizontal ellipsis ,n}. The motivation of this study is to solve a conjecture in algebraic graph theory for a special type of graph called a wheel graph. Brouwer's conjecture states that Sk(G)& LE;m+k+12, where k=1,2, horizontal ellipsis ,n. This paper proves Brouwer's conjecture for wheel graphs. It also provides an upper bound for the sum of the largest Laplacian eigenvalues for the wheel graph Wn+1, which provides a better approximation for this upper bound using Brouwer's conjecture and the Grone-Merris-Bai inequality. We study the symmetry of wheel graphs and recall an example of the symmetry group of Wn+1, n & GE;3. We obtain our results using majorization methods and illustrate our findings in tables, diagrams, and curves.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] On the multiplicities of normalized Laplacian eigenvalues of graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 365 - 385
  • [42] On the multiplicity of Laplacian eigenvalues for unicyclic graphs
    Fei Wen
    Qiongxiang Huang
    Czechoslovak Mathematical Journal, 2022, 72 : 371 - 390
  • [43] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [44] Integer Laplacian eigenvalues of chordal graphs
    Abreu, Nair
    Justel, Claudia Marcela
    Markenzon, Lilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 68 - 81
  • [45] Some Inequalities on Vertex Degrees, Eigenvalues, and Laplacian Eigenvalues of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2009, 80 : 217 - 224
  • [46] ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 611 - 619
  • [47] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    Journal of Mathematical Research with Applications, 2014, 34 (06) : 647 - 654
  • [48] On the bounds for the largest Laplacian eigenvalues of weighted graphs
    Sorgun, Sezer
    Buyukkose, Serife
    DISCRETE OPTIMIZATION, 2012, 9 (02) : 122 - 129
  • [49] Upper bounds for the sum of Laplacian eigenvalues of graphs
    Du, Zhibin
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3672 - 3683
  • [50] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Bo Zhou
    Aleksandar Ilić
    Czechoslovak Mathematical Journal, 2010, 60 : 1161 - 1169