On Laplacian Eigenvalues of Wheel Graphs

被引:0
|
作者
Alotaibi, Manal [1 ]
Alghamdi, Ahmad [2 ]
Alolaiyan, Hanan [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Mthemat, POB 2455, Riyadh 11451, Saudi Arabia
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
Laplacian eigenvalues; wheel graph; Grone-Merris-Bai theorem; Brouwer's conjecture; symmetry of wheel graphs; automorphism group of graphs; FULLERENES; SPECTRA; INDEX; C60;
D O I
10.3390/sym15091737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider G to be a simple graph with n vertices and m edges, and L(G) to be a Laplacian matrix with Laplacian eigenvalues of & mu;1,& mu;2, horizontal ellipsis ,& mu;n=zero. Write Sk(G)= n-ary sumation i=1k & mu;i as the sum of the k-largest Laplacian eigenvalues of G, where k & ISIN;{1,2, horizontal ellipsis ,n}. The motivation of this study is to solve a conjecture in algebraic graph theory for a special type of graph called a wheel graph. Brouwer's conjecture states that Sk(G)& LE;m+k+12, where k=1,2, horizontal ellipsis ,n. This paper proves Brouwer's conjecture for wheel graphs. It also provides an upper bound for the sum of the largest Laplacian eigenvalues for the wheel graph Wn+1, which provides a better approximation for this upper bound using Brouwer's conjecture and the Grone-Merris-Bai inequality. We study the symmetry of wheel graphs and recall an example of the symmetry group of Wn+1, n & GE;3. We obtain our results using majorization methods and illustrate our findings in tables, diagrams, and curves.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Bounds on normalized Laplacian eigenvalues of graphs
    Jianxi Li
    Ji-Ming Guo
    Wai Chee Shiu
    Journal of Inequalities and Applications, 2014
  • [22] The diameter and Laplacian eigenvalues of directed graphs
    Chung, F
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [23] Graphs with four distinct Laplacian eigenvalues
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (04) : 671 - 682
  • [24] On the distance and distance Laplacian eigenvalues of graphs
    Lin, Huiqiu
    Wu, Baoyindureng
    Chen, Yingying
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 492 : 128 - 135
  • [25] Toughness and normalized Laplacian eigenvalues of graphs
    Huang, Xueyi
    Das, Kinkar Chandra
    Zhu, Shunlai
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 425
  • [26] Graphs with four distinct Laplacian eigenvalues
    A. Mohammadian
    B. Tayfeh-Rezaie
    Journal of Algebraic Combinatorics, 2011, 34 : 671 - 682
  • [27] On the normalized distance laplacian eigenvalues of graphs
    Ganie, Hilal A.
    Rather, Bilal Ahmad
    Das, Kinkar Chandra
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438
  • [28] On graphs with three distinct Laplacian eigenvalues
    Wang Y.
    Fan Y.
    Tan Y.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (4) : 478 - 484
  • [29] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446
  • [30] On sum of powers of the Laplacian eigenvalues of graphs
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2239 - 2246