Predicting urine output of patients in Intensive Care Unit using deep neural network based on MIMIC-III data

被引:0
|
作者
Lee, Ho Joung [1 ]
Park, Sung Min [2 ]
Park, Ji In [3 ]
Choi, Seong Wook [4 ]
Kim, Wo Jin [5 ]
Heo, Yeon Jeong [5 ]
机构
[1] Kangwon Natl Univ Hosp, Dept Training, Chunchon, South Korea
[2] Kangwon Natl Univ Hosp, Thorac & Cardiovasc Surg, Chunchon, South Korea
[3] Kangwon Natl Univ Hosp, Nephrol, Chunchon, South Korea
[4] Kangwon Natl Univ, Biohlth Machinery Convergence Engn, Chunchon, South Korea
[5] Kangwon Natl Univ Hosp, Pulmonol, Chunchon, South Korea
关键词
D O I
暂无
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
AP11-329
引用
收藏
页码:323 / 323
页数:1
相关论文
共 50 条
  • [31] Predicting intensive care unit-acquired weakness: A multilayer perceptron neural network approach
    Ardila, Carlos Martin
    Gonzalez-Arroyave, Daniel
    Zuluaga-Gomez, Mateo
    WORLD JOURNAL OF CLINICAL CASES, 2024, 12 (12)
  • [32] Total bilirubin level is associated with acute kidney injury in neonates admitted to the neonatal intensive care units: based on MIMIC-III database
    Zhou, Huan
    EUROPEAN JOURNAL OF PEDIATRICS, 2024, 183 (10) : 4235 - 4241
  • [33] Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost
    Nianzong Hou
    Mingzhe Li
    Lu He
    Bing Xie
    Lin Wang
    Rumin Zhang
    Yong Yu
    Xiaodong Sun
    Zhengsheng Pan
    Kai Wang
    Journal of Translational Medicine, 18
  • [34] Brain Monitoring of Sedation in the Intensive Care Unit Using a Recurrent Neural Network
    Sun, Haoqi
    Nagaraj, Sunil B.
    Akeju, Oluwaseun
    Purdon, Patrick L.
    Westover, M. Brandon
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 4772 - 4775
  • [35] Predict postoperative intensive-care unit admission in geriatric patients using a neural network model
    Peng, Xi-Ran
    Zhu, Tao
    Chen, Guo
    Hao, Xue-Chao
    ASIAN JOURNAL OF SURGERY, 2022, 45 (11) : 2407 - 2408
  • [36] Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost
    Hou, Nianzong
    Li, Mingzhe
    He, Lu
    Xie, Bing
    Wang, Lin
    Zhang, Rumin
    Yu, Yong
    Sun, Xiaodong
    Pan, Zhengsheng
    Wang, Kai
    JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [37] Intensive Care Unit False Alarm Identification Based on Convolution Neural Network
    Yu, Qiang
    Wang, Cheng
    Xi, Jing
    Chen, Ying
    Li, Weifeng
    Ge, Yun
    Huang, Xiaolin
    IEEE ACCESS, 2021, 9 : 81841 - 81854
  • [38] Influence of the trajectory of the urine output for 24 h on the occurrence of AKI in patients with sepsis in intensive care unit
    Zhang, Luming
    Xu, Fengshuo
    Han, Didi
    Huang, Tao
    Li, Shaojin
    Yin, Haiyan
    Lyu, Jun
    JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [39] Comparison of Proportional Hazard Model and Neural Network Models in a real data set of intensive care unit patients
    Suka, M
    Oeda, S
    Ichimura, T
    Yoshida, K
    Takezawa, J
    MEDINFO 2004: PROCEEDINGS OF THE 11TH WORLD CONGRESS ON MEDICAL INFORMATICS, PT 1 AND 2, 2004, 107 : 741 - 745
  • [40] Influence of the trajectory of the urine output for 24 h on the occurrence of AKI in patients with sepsis in intensive care unit
    Luming Zhang
    Fengshuo Xu
    Didi Han
    Tao Huang
    Shaojin Li
    Haiyan Yin
    Jun Lyu
    Journal of Translational Medicine, 19