Predicting urine output of patients in Intensive Care Unit using deep neural network based on MIMIC-III data

被引:0
|
作者
Lee, Ho Joung [1 ]
Park, Sung Min [2 ]
Park, Ji In [3 ]
Choi, Seong Wook [4 ]
Kim, Wo Jin [5 ]
Heo, Yeon Jeong [5 ]
机构
[1] Kangwon Natl Univ Hosp, Dept Training, Chunchon, South Korea
[2] Kangwon Natl Univ Hosp, Thorac & Cardiovasc Surg, Chunchon, South Korea
[3] Kangwon Natl Univ Hosp, Nephrol, Chunchon, South Korea
[4] Kangwon Natl Univ, Biohlth Machinery Convergence Engn, Chunchon, South Korea
[5] Kangwon Natl Univ Hosp, Pulmonol, Chunchon, South Korea
关键词
D O I
暂无
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
AP11-329
引用
收藏
页码:323 / 323
页数:1
相关论文
共 50 条
  • [21] Predictive nomogram for 28-day mortality risk in mitral valve disorder patients in the intensive care unit: A comprehensive assessment from the MIMIC-III database
    Qiu, Yuxin
    Li, Menglei
    Song, Xiubao
    Li, Zihao
    Ma, Ao
    Meng, Zhichao
    Li, Yanfei
    Tan, Minghui
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 407
  • [22] Neural networks based on attention architecture are robust to data missingness for early predicting hospital mortality in intensive care unit patients
    Zeng, Zhixuan
    Liu, Yang
    Yao, Shuo
    Liu, Jiqiang
    Xiao, Bing
    Liu, Chenxue
    Gong, Xun
    DIGITAL HEALTH, 2023, 9
  • [23] Predicting readmission to the cardiovascular intensive care unit using recurrent neural networks
    Kessler, Steven
    Schroeder, Dennis
    Korlakov, Sergej
    Hettlich, Vincent
    Kalkhoff, Sebastian
    Moazemi, Sobhan
    Lichtenberg, Artur
    Schmid, Falko
    Aubin, Hug
    DIGITAL HEALTH, 2023, 9
  • [24] Predicting Technology Success Based On Patent Data, Using a Wide And Deep Neural Network And A Recurrent Neural Network
    Saade, Marie
    Jneid, Maroun
    Imad, Saleh
    EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT THROUGH VISION 2020, 2019, : 453 - 469
  • [25] Towards a decision support tool for intensive care discharge: machine learning algorithm development using electronic healthcare data from MIMIC-III and Bristol, UK
    McWilliams, Christopher J.
    Lawson, Daniel J.
    Santos-Rodriguez, Raul
    Gilchrist, Iain D.
    Champneys, Alan
    Gould, Timothy H.
    Thomas, Mathew J. C.
    Bourdeaux, Christopher P.
    BMJ OPEN, 2019, 9 (03):
  • [26] A Novel Nomogram for Predicting Survival in Patients with Severe Acute Pancreatitis: An Analysis Based on the Large MIMIC-III Clinical Database
    Han, Didi
    Xu, Fengshuo
    Li, Chengzhuo
    Zhang, Luming
    Yang, Rui
    Zheng, Shuai
    Wang, Zichen
    Lyu, Jun
    EMERGENCY MEDICINE INTERNATIONAL, 2021, 2021
  • [27] The impact of postoperative residual urine output on intensive care unit mortality in chronic hemodialysis patients
    Wu, Vin-Cent
    Huang, Shu-Chuan
    Ko, Wen-Jo
    Wu, Kwan-Dun
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2007, 22 : 130 - 130
  • [28] Neural network adaptive output feedback control for intensive care unit sedation and intraoperative anesthesia
    Haddad, Wassim M.
    Bailey, James M.
    Hayakawa, Tomohisa
    Hovakimyan, Naira
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (04): : 1049 - 1066
  • [29] A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit
    Ahmed, Fahad Shabbir
    Ali, Liaqat
    Joseph, Bellal A.
    Ikram, Asad
    Ul Mustafa, Raza
    Bukhari, Syed Ahmad Chan
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2020, 89 (04): : 736 - 742
  • [30] Predicting Intensive Care Unit Admissions in Patients With Alcohol Withdrawal Using Electronic Health Record Data
    To, D.
    Carey, K.
    Joyce, C.
    Salisbury-Afshar, E.
    Edelson, D. P.
    Churpek, M. M.
    Afshar, M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207