Predicting urine output of patients in Intensive Care Unit using deep neural network based on MIMIC-III data

被引:0
|
作者
Lee, Ho Joung [1 ]
Park, Sung Min [2 ]
Park, Ji In [3 ]
Choi, Seong Wook [4 ]
Kim, Wo Jin [5 ]
Heo, Yeon Jeong [5 ]
机构
[1] Kangwon Natl Univ Hosp, Dept Training, Chunchon, South Korea
[2] Kangwon Natl Univ Hosp, Thorac & Cardiovasc Surg, Chunchon, South Korea
[3] Kangwon Natl Univ Hosp, Nephrol, Chunchon, South Korea
[4] Kangwon Natl Univ, Biohlth Machinery Convergence Engn, Chunchon, South Korea
[5] Kangwon Natl Univ Hosp, Pulmonol, Chunchon, South Korea
关键词
D O I
暂无
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
AP11-329
引用
收藏
页码:323 / 323
页数:1
相关论文
共 50 条
  • [1] Prediction of Length-of-stay at Intensive Care Unit (ICU) Using Machine Learning based on MIMIC-III Database
    Hasan, Md Nahid
    Hamdant, Sammi
    Poudel, Samir
    Vargas, Jorge
    Poudel, Khem
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 321 - 323
  • [2] Survival Prediction in Patients with Hypertensive Chronic Kidney Disease in Intensive Care Unit: A Retrospective Analysis Based on the MIMIC-III Database
    Xia, Zuoxun
    Xu, Peng
    Xiong, Ye
    Lai, Yunbo
    Huang, Zhaohui
    JOURNAL OF IMMUNOLOGY RESEARCH, 2022, 2022
  • [3] Outcomes for Patients with Sepsis Following Admission to the Intensive Care Unit Based on Health Insurance Status: A Study from the Medical Information Mart for Intensive Care-III (MIMIC-III) Database
    Zhou, Ying
    Yang, Di
    Fu, Qiang
    Chen, Tao
    Chen, Yong
    Zheng, Chuandong
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [4] The impact of transthoracic echocardiography on the short-term prognosis of elderly patients in the intensive care unit: a retrospective analysis based on the MIMIC-III database
    Li, Baoping
    Shi, Dongwu
    Zhu, Lili
    Li, Ximei
    Wang, Shuying
    Yang, Feifei
    Song, Yu
    Xue, Dongdong
    Mao, Zhi
    ANNALS OF PALLIATIVE MEDICINE, 2021, 10 (07) : 7653 - 7661
  • [5] Diuretic strategies in patients with resistance to loop-diuretics in the intensive care unit: A retrospective study from the MIMIC-III database
    Cote, Jean-Maxime
    Bouchard, Josee
    Murray, Patrick T.
    Beaubien-Souligny, William
    JOURNAL OF CRITICAL CARE, 2021, 65 : 282 - 291
  • [6] UMLS mapping and Word embeddings for ICD code assignment using the MIMIC-III intensive care database
    Schaefer, Henning
    Friedrich, Christoph M.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6089 - 6092
  • [7] Characteristics of Patients with Vasodilatory Shock in Medical Information Mart for Intensive Care (MIMIC-III) - A Retrospective Study
    Zeng, F.
    Gerbasi, M. E.
    Oster, G.
    Grossman, A.
    Chen, S.
    Chawla, L. S.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [8] Predicting the need for intubation within 3 h in the neonatal intensive care unit using a multimodal deep neural network
    Jueng-Eun Im
    Seung Park
    Yoo-Jin Kim
    Shin Ae Yoon
    Ji Hyuk Lee
    Scientific Reports, 13
  • [9] Predicting the need for intubation within 3 h in the neonatal intensive care unit using a multimodal deep neural network
    Im, Jueng-Eun
    Park, Seung
    Kim, Yoo-Jin
    Yoon, Shin Ae
    Lee, Ji Hyuk
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database
    Li, Fuhai
    Xin, Hui
    Zhang, Jidong
    Fu, Mingqiang
    Zhou, Jingmin
    Lian, Zhexun
    BMJ OPEN, 2021, 11 (07):