Local minimizers for a class of functionals over the Nehari set

被引:3
|
作者
Quoirin, Humberto Ramos [1 ]
Silva, Kaye [2 ]
机构
[1] Univ Nacl Cordoba, CIEM FaMAF, RA-5000 Cordoba, Argentina
[2] Univ Fed Goias, Inst Matemat & Estat, Rua Samambaia, BR-74001970 Goiania, Go, Brazil
关键词
Quasilinear pde; Variational methods; Nehari manifold; Indefinite problems; SEMILINEAR ELLIPTIC EQUATION; POSITIVE SOLUTIONS; P-LAPLACIAN; EXTREME-VALUE; MANIFOLD; EXISTENCE;
D O I
10.1016/j.jmaa.2022.126851
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the behavior of indefinite type functionals depending on a real parameter lambda over its Nehari set. A special attention is paid to the extremal parameter lambda*, which plays an important role. The main difficulty arises when lambda > lambda*, as the energy functional may be unbounded from below over the Nehari set. In such situation we prove the existence of local minimizers of the functional constrained to this set. We unify and extend previous existence and multiplicity results for critical points of indefinite, (p, q)-Laplacian, and Kirchhoff type problems. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] LOCAL BOUNDEDNESS OF VECTORIAL MINIMIZERS OF NON-CONVEX FUNCTIONALS
    Cupini, G.
    Focardi, M.
    Leonetti, F.
    Mascolo, E.
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2018, 9 : 20 - 40
  • [23] Maximal regularity for local minimizers of non-autonomous functionals
    Hasto, Peter
    Ok, Jihoon
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (04) : 1285 - 1334
  • [24] Minimizers of energy functionals
    C. Léonard
    Acta Mathematica Hungarica, 2001, 93 : 281 - 325
  • [25] Minimizers of energy functionals
    Léonard, C
    ACTA MATHEMATICA HUNGARICA, 2001, 93 (04) : 281 - 325
  • [26] Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth
    Flavia Giannetti
    Antonia Passarelli di Napoli
    Maria Alessandra Ragusa
    Atsushi Tachikawa
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [27] Lipschitz minimizers for a class of integral functionals under the bounded slope condition*
    Don, Sebastiano
    Lussardi, Luca
    Pinamonti, Andrea
    Treu, Giulia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216
  • [28] Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [29] Sobolev and Lipschitz regularity for local minimizers of widely degenerate anisotropic functionals
    Brasco, Lorenzo
    Leone, Chiara
    Pisante, Giovanni
    Verde, Anna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 : 169 - 199
  • [30] Convergence of Minimizers with Local Energy Bounds for the Ginzburg-Landau Functionals
    Baldo, S.
    Orlandi, G.
    Weitkamp, S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (05) : 2369 - 2407