Feature Fusion Based Parallel Graph Convolutional Neural Network for Image Annotation

被引:1
|
作者
Wang, Mengke [1 ]
Liu, Yan [1 ]
Liu, Weifeng [1 ]
Liu, Baodi [1 ]
机构
[1] China Univ Petr East China, Coll Control Sci & Engn, Qingdao, Peoples R China
关键词
Feature fusion; Image annotation; Parallel convolutional networks;
D O I
10.1007/s11063-022-11131-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks' application in automatic image annotation is becoming more mature. However, there are still several problems. First, the feature data of the original image obtained by the feature extraction algorithm, such as color features and gradient features, all have the problem of slight intra-class variance and significant inter-class variance. Second, merely utilize the graph convolution neural networks to construct samples or labeled graphs, limiting multimodality's fusion and expansion. This paper uses a parallel graph convolution network based on feature fusion for automatic image annotation. By fusing the sample features, the inherent defects of the features extracted by a single model are reduced, and the annotation performance under the condition of semi-supervised learning is improved. Experiments on three benchmark image annotation datasets show that this method is superior to the existing methods.
引用
收藏
页码:6153 / 6164
页数:12
相关论文
共 50 条
  • [1] Feature Fusion Based Parallel Graph Convolutional Neural Network for Image Annotation
    Mengke Wang
    Yan Liu
    Weifeng Liu
    Baodi Liu
    Neural Processing Letters, 2023, 55 : 6153 - 6164
  • [2] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [3] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [4] SFFNet: Staged Feature Fusion Network of Connecting Convolutional Neural Networks and Graph Convolutional Neural Networks for Hyperspectral Image Classification
    Li, Hao
    Xiong, Xiaorui
    Liu, Chaoxian
    Ma, Yong
    Zeng, Shan
    Li, Yaqin
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [5] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4): : 819 - 831
  • [6] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Mingxuan Liang
    Pei Cao
    J. Tang
    The International Journal of Advanced Manufacturing Technology, 2021, 112 : 819 - 831
  • [7] Image Annotation Based on Convolutional Neural Network and Topic Model
    Zhang Lei
    Cai Ming
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (20)
  • [8] Parallel Hypergraph Convolutional Neural Networks for Image Annotation
    Wang, Mengke
    Liu, Weifeng
    Yuan, Xinan
    Li, Wei
    Liu, Baodi
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6582 - 6587
  • [9] Graph Convolutional Network With Local and Global Feature Fusion for Hyperspectral Image Classification
    Wang, Yufan
    Yu, Xiaodong
    Dong, Hongbin
    Zang, Shuying
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [10] Dual-Branch Fusion of Convolutional Neural Network and Graph Convolutional Network for PolSAR Image Classification
    Radman, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Salehi, Bahram
    Mohammadimanesh, Fariba
    REMOTE SENSING, 2023, 15 (01)