Dual-Branch Fusion of Convolutional Neural Network and Graph Convolutional Network for PolSAR Image Classification

被引:4
|
作者
Radman, Ali [1 ]
Mahdianpari, Masoud [1 ,2 ]
Brisco, Brian [3 ]
Salehi, Bahram [4 ]
Mohammadimanesh, Fariba [2 ]
机构
[1] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NL A1B3X5, Canada
[2] C CORE, St John, NL A1B 3X5, Canada
[3] Canada Ctr Mapping & Earth Observat, Ottawa, ON K1S 5K2, Canada
[4] SUNY Coll Environm Sci & Forestry SUNY ESF, Dept Environm Resources Engn, Syracuse, NY 13210 USA
基金
加拿大自然科学与工程研究理事会;
关键词
classification; convolutional neural network (CNNs); dual-branch fusion; graph convolutional networks (GCNs); PolSAR; POLARIMETRIC SAR IMAGES; LAND-COVER; SCATTERING MODEL;
D O I
10.3390/rs15010075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polarimetric synthetic aperture radar (PolSAR) images contain useful information, which can lead to extensive land cover interpretation and a variety of output products. In contrast to optical imagery, there are several challenges in extracting beneficial features from PolSAR data. Deep learning (DL) methods can provide solutions to address PolSAR feature extraction challenges. The convolutional neural networks (CNNs) and graph convolutional networks (GCNs) can drive PolSAR image characteristics by deploying kernel abilities in considering neighborhood (local) information and graphs in considering long-range similarities. A novel dual-branch fusion of CNN and mini-GCN is proposed in this study for PolSAR image classification. To fully utilize the PolSAR image capacity, different spatial-based and polarimetric-based features are incorporated into CNN and mini-GCN branches of the proposed model. The performance of the proposed method is verified by comparing the classification results to multiple state-of-the-art approaches on the airborne synthetic aperture radar (AIRSAR) dataset of Flevoland and San Francisco. The proposed approach showed 1.3% and 2.7% improvements in overall accuracy compared to conventional methods with these AIRSAR datasets. Meanwhile, it enhanced its one-branch version by 0.73% and 1.82%. Analyses over Flevoland data further indicated the effectiveness of the dual-branch model using varied training sampling ratios, leading to a promising overall accuracy of 99.9% with a 10% sampling ratio.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] A Dual-Branch Fusion of a Graph Convolutional Network and a Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Pan
    Zhang, Xinxin
    SENSORS, 2024, 24 (14)
  • [2] DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration
    Zhu, Wenkai
    Sun, Xueying
    Zhang, Qiang
    ELECTRONICS, 2024, 13 (16)
  • [3] Adaptive Graph Convolutional Network for PolSAR Image Classification
    Liu, Fang
    Wang, Jingya
    Tang, Xu
    Liu, Jia
    Zhang, Xiangrong
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation
    Jian, Muwei
    Wu, Ronghua
    Chen, Hongyu
    Fu, Lanqi
    Yang, Chengdong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 705 - 716
  • [5] FUSION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DUAL-BRANCH CONVOLUTIONAL NEURAL NETWORK
    Wang, Jinzhe
    Zhang, Junping
    Guo, Qingle
    Li, Tong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3388 - 3391
  • [6] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [7] Dual-Branch Difference Amplification Graph Convolutional Network for Hyperspectral Image Change Detection
    Qu, Jiahui
    Xu, Yunshuang
    Dong, Wenqian
    Li, Yunsong
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Polarimetric Multipath Convolutional Neural Network for PolSAR Image Classification
    Cui, Yuanhao
    Liu, Fang
    Jiao, Licheng
    Guo, Yuwei
    Liang, Xuefeng
    Li, Lingling
    Yang, Shuyuan
    Qian, Xiaoxue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] PolSAR image classification based on deep convolutional neural network
    Wang, Yunyan
    Wang, Gaihua
    Lan, Yihua
    Metallurgical and Mining Industry, 2015, 7 (08): : 366 - 371
  • [10] Deep Graph Convolutional Network with Dual-Branch and Multi-interaction
    Lou J.
    Ye H.
    Yang B.
    Li M.
    Cao F.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (08): : 754 - 763