Feature Fusion Based Parallel Graph Convolutional Neural Network for Image Annotation

被引:1
|
作者
Wang, Mengke [1 ]
Liu, Yan [1 ]
Liu, Weifeng [1 ]
Liu, Baodi [1 ]
机构
[1] China Univ Petr East China, Coll Control Sci & Engn, Qingdao, Peoples R China
关键词
Feature fusion; Image annotation; Parallel convolutional networks;
D O I
10.1007/s11063-022-11131-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks' application in automatic image annotation is becoming more mature. However, there are still several problems. First, the feature data of the original image obtained by the feature extraction algorithm, such as color features and gradient features, all have the problem of slight intra-class variance and significant inter-class variance. Second, merely utilize the graph convolution neural networks to construct samples or labeled graphs, limiting multimodality's fusion and expansion. This paper uses a parallel graph convolution network based on feature fusion for automatic image annotation. By fusing the sample features, the inherent defects of the features extracted by a single model are reduced, and the annotation performance under the condition of semi-supervised learning is improved. Experiments on three benchmark image annotation datasets show that this method is superior to the existing methods.
引用
收藏
页码:6153 / 6164
页数:12
相关论文
共 50 条
  • [31] PARALLEL GRAPH ATTENTION NETWORK MODEL BASED ON PIXEL AND SUPERPIXEL FEATURE FUSION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Ma, Lisong
    Wang, Qingyan
    Zhang, Junping
    Wang, Yujing
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7226 - 7229
  • [32] Multifocus image fusion method based on a convolutional neural network
    Zhai, Hao
    Zhuang, Yi
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (02)
  • [33] Automatic image annotation method based on a convolutional neural network with threshold optimization
    Cao, Jianfang
    Zhao, Aidi
    Zhang, Zibang
    PLOS ONE, 2020, 15 (09):
  • [34] Superpixel Based Graph Convolutional Neural Network for SAR Image Segmentation
    Turkmenli, Ilter
    Aptoula, Erchan
    Kayabol, Koray
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [35] An interlayer feature fusion-based heterogeneous graph neural network
    Feng, Ke
    Rao, Guozheng
    Zhang, Li
    Cong, Qing
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25626 - 25639
  • [36] An interlayer feature fusion-based heterogeneous graph neural network
    Ke Feng
    Guozheng Rao
    Li Zhang
    Qing Cong
    Applied Intelligence, 2023, 53 : 25626 - 25639
  • [37] Feature pyramid-based convolutional neural network image inpainting
    Shengbo Wang
    Xiuyou Wang
    Signal, Image and Video Processing, 2024, 18 : 437 - 443
  • [38] Feature pyramid-based convolutional neural network image inpainting
    Wang, Shengbo
    Wang, Xiuyou
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 437 - 443
  • [39] Convolutional Neural Network Image Feature Measurement Based on Information Entropy
    Chen Wenjun
    Cong Chao
    Huang Liwen
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [40] Research on Feature Extraction of Tumor Image Based on Convolutional Neural Network
    Yang, Aimin
    Yang, Xiaolei
    Wu, Wenrui
    Liu, Huixiang
    Zhuansun, Yunxi
    IEEE ACCESS, 2019, 7 : 24204 - 24213