PHY Security Design for Mobile Crowd Computing in ICV Networks Based on Multi-Agent Reinforcement Learning

被引:4
|
作者
Luo, Xuewen [1 ]
Liu, Yiliang [2 ]
Chen, Hsiao-Hwa [3 ]
Guo, Qing [1 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150001, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Cyber Sci & Engn, Xian 710049, Peoples R China
[3] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan
关键词
Intelligently connected vehicle; PHY security; artificial noise; adaptive wiretap coding; computing task offloading; multi-agent reinforcement learning; PHYSICAL LAYER SECURITY; RESOURCE-MANAGEMENT; PERFORMANCE; MIMO;
D O I
10.1109/TWC.2023.3245637
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle user equipments (VUEs). Physical (PHY) layer security is used to secure computation task offloading and results feedback in time-varying vehicular channels. Artificial noise (AN) assisted adaptive wiretap coding is adopted to enhance the security of offloading links. With PHY security, the intended receiver can decode secret message while eavesdropper cannot. A modified exhaustive two-dimensional (2D) search algorithm is proposed to optimize transmission rate and secrecy rate in an effective secrecy throughput maximization problem, and a multi-agent twin delayed deep deterministic policy gradient algorithm (MATD3) is utilized to assign VUEs' tasks without a central controller, where a reward function is defined according to the computing costs, including execution time, energy consumption, and price paid for computing. Finally, simulations verify the effectiveness of the proposed framework.
引用
收藏
页码:6810 / 6825
页数:16
相关论文
共 50 条
  • [31] Multi-Agent Deep Reinforcement Learning for Packet Routing in Tactical Mobile Sensor Networks
    Okine, Andrews A.
    Adam, Nadir
    Naeem, Faisal
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2155 - 2169
  • [32] Task-oriented Resource Allocation for Mobile Edge Computing with Multi-Agent Reinforcement Learning
    Zou, Yue
    Shen, Fei
    Yan, Feng
    Tang, Liang
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [33] The Application of Multi-Agent Reinforcement Learning in UAV Networks
    Cui, Jingjing
    Liu, Yuanwei
    Nallanathan, Arumugam
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2019,
  • [34] Reinforcement learning based on multi-agent in RoboCup
    Zhang, W
    Li, JG
    Ruan, XG
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 967 - 975
  • [35] Multi-Agent Deep Reinforcement Learning-Based Trajectory Planning for Multi-UAV Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 73 - 84
  • [36] Multi-agent event triggered hierarchical security reinforcement learning
    Sun, Hui-Hui
    Hu, Chun-He
    Zhang, Jun-Guo
    Kongzhi yu Juece/Control and Decision, 2024, 39 (11): : 3755 - 3762
  • [37] Multi-agent reinforcement learning based computation offloading and resource allocation for LEO Satellite edge computing networks
    Li, Hai
    Yu, Jinyang
    Cao, Lili
    Zhang, Qin
    Song, Zhengyu
    Hou, Shujuan
    COMPUTER COMMUNICATIONS, 2024, 222 : 268 - 276
  • [38] The Cooperative Reinforcement Learning in a Multi-Agent Design System
    Liu, Hong
    Wang, Jihua
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 139 - 144
  • [39] Battlefield Environment Design for Multi-agent Reinforcement Learning
    Do, Seungwon
    Baek, Jaeuk
    Jun, Sungwoo
    Lee, Changeun
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 318 - 319
  • [40] IntelligentCrowd: Mobile Crowdsensing via Multi-Agent Reinforcement Learning
    Chen, Yize
    Wang, Hao
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (05): : 840 - 845