Multi-Agent Deep Reinforcement Learning for Packet Routing in Tactical Mobile Sensor Networks

被引:4
|
作者
Okine, Andrews A. [1 ]
Adam, Nadir [1 ]
Naeem, Faisal [1 ]
Kaddoum, Georges [1 ,2 ]
机构
[1] Univ Quebec, Ecole Technol Super, Elect Engn Dept, Montreal, PQ H3C 1K3, Canada
[2] Lebanese Amer Univ, Artificial Intelligence & Cyber Syst Res Ctr, Beirut 11022801, Lebanon
关键词
Routing; wireless sensor networks; tactical wireless networks; deep reinforcement learning; jamming; PROTOCOL; ENERGY;
D O I
10.1109/TNSM.2024.3352014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tactical wireless sensor networks (T-WSNs) are used in critical data-gathering military operations, such as battlefield surveillance, combat monitoring, and intrusion detection. These networks have unique challenges, such as jamming attacks, which are not normally encountered in traditional WSNs. Jamming attacks on the networks' links disrupt data communication and make packet routing in T-WSNs a difficult task. Consequently, T-WSN routing aims to find the most reliable routes, while meeting the stringent delay and energy requirements. To this end, we propose a distributed multi-agent deep reinforcement learning (MADRL)-based routing solution for multi-sink tactical mobile sensor networks to overcome link layer jamming attacks. Our proposed routing scheme captures the hop count to the nearest sink, the one-hop delay, the next hop's packet loss rate (PLR), and the energy cost of packet forwarding in the action reward estimation. Furthermore, the proposed scheme outperforms benchmark algorithms in terms of the packet delivery ratio (PDR), packet delivery time, and energy efficiency.
引用
收藏
页码:2155 / 2169
页数:15
相关论文
共 50 条
  • [1] Routing with Graph Convolutional Networks and Multi-Agent Deep Reinforcement Learning
    Bhavanasi, Sai Shreyas
    Pappone, Lorenzo
    Esposito, Flavio
    2022 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), 2022, : 72 - 77
  • [2] Multi-Agent Packet Routing (MAPR): Co-Operative Packet Routing Algorithm with Multi-Agent Reinforcement Learning
    Modi, Aniket
    Shah, Rishi
    Jain, Krishnanshu
    Verma, Rohit
    Shorey, Rajeev
    Saran, Huzur
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [3] Packet Routing with Graph Attention Multi-Agent Reinforcement Learning
    Mai, Xuan
    Fu, Quanzhi
    Chen, Yi
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [4] Toward Packet Routing with Fully-distributed Multi-agent Deep Reinforcement Learning
    You, Xinyu
    Li, Xuanjie
    Xu, Yuedong
    Feng, Hui
    Zhao, Jin
    17TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT 2019), 2019, : 31 - 38
  • [5] PRISMA: A Packet Routing Simulator for Multi-Agent Reinforcement Learning
    Alliche, Redha A.
    Barros, Tiago Da Silva
    Aparicio-Pardo, Ramon
    Sassatelli, Lucile
    2022 IFIP NETWORKING CONFERENCE (IFIP NETWORKING), 2022,
  • [6] Multi-Agent Deep Reinforcement Learning for Coordinated Multipoint in Mobile Networks
    Schneider, Stefan
    Karl, Holger
    Khalili, Ramin
    Hecker, Artur
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 908 - 924
  • [7] A Multi-agent Reinforcement Learning based Routing Protocol for Wireless Sensor Networks
    Liang, Xuedong
    Balasingham, Ilangko
    Byun, Sang-Seon
    2008 IEEE INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS 2008), 2008, : 528 - +
  • [8] A Multi-Agent Reinforcement Learning Routing Protocol for Underwater Optical Sensor Networks
    Li, Xinge
    Hu, Xiaoya
    Li, Wei
    Hu, Hui
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [9] A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks
    Ye, Dayon
    Zhang, Minji
    Yang, Yu
    SENSORS, 2015, 15 (05) : 10026 - 10047
  • [10] DeepMPR: Enhancing Opportunistic Routing in Wireless Networks via Multi-Agent Deep Reinforcement Learning
    Kaviani, Saeed
    Ryu, Bo
    Ahmed, Ejaz
    Kim, Deokseong
    Kim, Jae
    Spiker, Carrie
    Harnden, Blake
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,