PRISMA: A Packet Routing Simulator for Multi-Agent Reinforcement Learning

被引:0
|
作者
Alliche, Redha A. [1 ]
Barros, Tiago Da Silva [1 ]
Aparicio-Pardo, Ramon [1 ]
Sassatelli, Lucile [2 ]
机构
[1] Univ Cote dAzur, INRIA, CNRS, I3S, Nice, France
[2] Univ Cote dAzur, Inst Univ France, CNRS, I3S, Nice, France
关键词
ns-3; Multi-Agent; Packet Routing; Reinforcement Learning; Network Simulation; ML tool;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present PRISMA: Packet Routing Simulator for Multi-Agent Reinforcement Learning. To the best of our knowledge, this is the first tool specifically conceived to develop and test Reinforcement Learning (RL) algorithms for the Distributed Packet Routing (DPR) problem. In this problem, where a communication node selects the outgoing port to forward a packet using local information, distance-vector routing protocol (e.g., RIP) are traditionally applied. However, when network status changes very dynamically, is uncertain, or is partially hidden (e.g., wireless ad hoc networks or wired multi-domain networks), RL is an alternate solution to discover routing policies better fitted to these cases. Unfortunately, no RL tools have been developed to tackle the DPR problem, forcing the researchers to implement their own simplified RL simulation environments, complicating reproducibility and reducing realism. To overcome these issues, we present PRISMA, which offers to the community a standardized framework where: (i) communication process is realistically modelled (thanks to ns3); (ii) distributed nature is explicitly considered (nodes are implemented as separated threads); (iii) and, RL proposals can be easily developed (thanks to a modular code design and real-time training visualization interfaces) and fairly compared them.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multi-Agent Packet Routing (MAPR): Co-Operative Packet Routing Algorithm with Multi-Agent Reinforcement Learning
    Modi, Aniket
    Shah, Rishi
    Jain, Krishnanshu
    Verma, Rohit
    Shorey, Rajeev
    Saran, Huzur
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [2] Packet Routing with Graph Attention Multi-Agent Reinforcement Learning
    Mai, Xuan
    Fu, Quanzhi
    Chen, Yi
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [3] Toward Packet Routing with Fully-distributed Multi-agent Deep Reinforcement Learning
    You, Xinyu
    Li, Xuanjie
    Xu, Yuedong
    Feng, Hui
    Zhao, Jin
    17TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT 2019), 2019, : 31 - 38
  • [4] Multi-Agent Deep Reinforcement Learning for Packet Routing in Tactical Mobile Sensor Networks
    Okine, Andrews A.
    Adam, Nadir
    Naeem, Faisal
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2155 - 2169
  • [5] Learning to Routing in UAV Swarm Network: A Multi-Agent Reinforcement Learning Approach
    Wang, Zunliang
    Yao, Haipeng
    Mai, Tianle
    Xiong, Zehui
    Wu, Xiaohua
    Wu, Di
    Guo, Song
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6611 - 6624
  • [6] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [7] Routing with Graph Convolutional Networks and Multi-Agent Deep Reinforcement Learning
    Bhavanasi, Sai Shreyas
    Pappone, Lorenzo
    Esposito, Flavio
    2022 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), 2022, : 72 - 77
  • [8] Jointly Optimal Caching and Routing Using Multi-Agent Reinforcement Learning
    Yang, Meiyi
    Gao, Deyun
    Foh, Chuan Heng
    Liu, Sai
    Qin, Yajuan
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1226 - 1231
  • [9] MULTI-AGENT REINFORCEMENT LEARNING WITH CONTRIBUTIONBASED ASSIGNMENT ONLINE ROUTING IN SDN
    Yue Xiaofeng
    Wu Lijun
    Duan Weiwei
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [10] Multi-agent reinforcement learning for electric vehicle decarbonized routing and scheduling
    Wang, Yi
    Qiu, Dawei
    He, Yinglong
    Zhou, Quan
    Strbac, Goran
    ENERGY, 2023, 284