Weyl families of transformed boundary pairs

被引:1
|
作者
Jursenas, Rytis [1 ,2 ]
机构
[1] Vilnius Univ, Inst Theoret Phys & Astron, Vilnius, Lithuania
[2] Vilnius Univ, Inst Theoret Phys & Astron, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
关键词
essentially unitary boundary pair; gamma field; Hilbert space; isometric boundary pair; Krein space; linear relation; ordinary boundary triple; Pontryagin space; Shmul'yan transform; unitary boundary pair; Weyl family; GENERALIZED RESOLVENTS; DIFFERENTIAL-OPERATORS; SYMMETRIC-OPERATORS; LINEAR RELATIONS; EXTENSIONS; SUBSPACES; TRIPLETS; FORMULA;
D O I
10.1002/mana.202100262
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (L,Gamma)$(\mathfrak {L},\Gamma )$ be an isometric boundary pair associated with a closed symmetric linear relation T in a Krein space H$\mathfrak {H}$. Let M Gamma$M_\Gamma$ be the Weyl family corresponding to (L,Gamma)$(\mathfrak {L},\Gamma )$. We cope with two main topics. First, since M Gamma$M_\Gamma$ need not be (generalized) Nevanlinna, the characterization of the closure and the adjoint of a linear relation M Gamma(z)$M_\Gamma (z)$, for some z is an element of C set minus R$z\in \mathbb {C}\setminus \mathbb {R}$, becomes a nontrivial task. Regarding M Gamma(z)$M_\Gamma (z)$ as the (Shmul'yan) transform of zI$zI$ induced by Gamma, we give conditions for the equality in M Gamma(z) over bar subset of M Gamma over bar (z) over bar $\overline{M_\Gamma (z)}\subseteq \overline{M_{\overline{\Gamma }}(z)}$ to hold and we compute the adjoint M Gamma over bar (z)*$M_{\overline{\Gamma }}(z)<^>*$. As an application, we ask when the resolvent set of the main transform associated with a unitary boundary pair for T+$T<^>+$ is nonempty. Based on the criterion for the closeness of M Gamma(z)$M_\Gamma (z)$, we give a sufficient condition for the answer. From this result it follows, for example, that, if T is a standard linear relation in a Pontryagin space, then the Weyl family M Gamma$M_\Gamma$ corresponding to a boundary relation Gamma for T+$T<^>+$ is a generalized Nevanlinna family; a similar conclusion is already known if T is an operator. In the second topic, we characterize the transformed boundary pair (L ',Gamma ')$(\mathfrak {L}<^>\prime ,\Gamma <^>\prime )$ with its Weyl family M Gamma '$M_{\Gamma <^>\prime }$. The transformation scheme is either Gamma '=Gamma V-1$\Gamma <^>\prime =\Gamma V<^>{-1}$ or Gamma '=V Gamma$\Gamma <^>\prime =V\Gamma$ with suitable linear relations V. Results in this direction include but are not limited to: a 1-1 correspondence between (L,Gamma)$(\mathfrak {L},\Gamma )$ and (L ',Gamma ')$(\mathfrak {L}<^>\prime ,\Gamma <^>\prime )$; the formula for M Gamma '-M Gamma$M_{\Gamma <^>\prime }-M_\Gamma$, for an ordinary boundary triple and a standard unitary operator V (first scheme); construction of a quasi boundary triple from an isometric boundary triple (L,Gamma 0,Gamma 1)$(\mathfrak {L},\Gamma _0,\Gamma _1)$ with ker Gamma=T$\ker \Gamma =T$ and T0=T0*$T_0=T<^>*_0$ (second scheme, Hilbert space case).
引用
收藏
页码:3411 / 3448
页数:38
相关论文
共 50 条
  • [21] Phononic Weyl Nodal Lines and Weyl Pairs in van der Waals Heavy Fermion Material CeSiI
    Li, Fulei
    Yu, Tianye
    Lai, Junwen
    Liu, Jiaxi
    Liu, Peitao
    Chen, Xing-Qiu
    Sun, Yan
    CHINESE PHYSICS LETTERS, 2024, 41 (10)
  • [22] AN EXTREMAL PROBLEM FOR FAMILIES OF PAIRS OF SUBSPACES
    KATCHALSKI, M
    MESHULAM, R
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (03) : 253 - 257
  • [23] Families of expanding graphs and Hecke pairs
    Bekka, MB
    Curtis, R
    de la Harpe, P
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) : 463 - 468
  • [24] Bounds on Pairs of Families with Restricted Intersections
    Jiří Sgall
    Combinatorica, 1999, 19 : 555 - 566
  • [25] FAMILIES OF VECTORS WITHOUT ANTIPODAL PAIRS
    Frankl, Peter
    Kupavskii, Andrey
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2018, 55 (02) : 231 - 237
  • [26] Phononic Weyl Nodal Lines and Weyl Pairs in van der Waals Heavy Fermion Material CeSiI
    李复磊
    于天野
    赖俊文
    刘嘉希
    刘培涛
    陈星秋
    孙岩
    Chinese Physics Letters, 2024, 41 (10) : 100 - 105
  • [27] 3 MIRROR PAIRS OF FERMION FAMILIES
    MONTVAY, I
    PHYSICS LETTERS B, 1988, 205 (2-3) : 315 - 320
  • [28] Bounds on pairs of families with restricted intersections
    Sgall, J
    COMBINATORICA, 1999, 19 (04) : 555 - 566
  • [29] Combinatorial flip actions and Gelfand pairs for affine Weyl groups
    Adin, Ron M.
    Hegedus, Pal
    Roichman, Yuval
    JOURNAL OF ALGEBRA, 2022, 607 : 5 - 33
  • [30] On the nets of equi-conjugate pairs of curves in a Weyl hypersurface
    Altay S.
    Uysal S.A.
    Journal of Geometry, 2000, 68 (1-2) : 1 - 9