Bounds on Pairs of Families with Restricted Intersections

被引:0
|
作者
Jiří Sgall
机构
[1] Mathematical Institute,
[2] AS CR; Žitná 25,undefined
[3] CZ-11567 Praha 1,undefined
[4] Czech Republic; E-mail: sgall@math.cas.cz,undefined
[5] http://www.math.cas.cz/~sgall/ and Dept. of Applied Mathematics,undefined
[6] Faculty of Mathematics and Physics,undefined
[7] Charles University; Prague,undefined
来源
Combinatorica | 1999年 / 19卷
关键词
AMS Subject Classification (1991) Classes:  05D05; 68R05;
D O I
暂无
中图分类号
学科分类号
摘要
such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We are interested in the maximum product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, given r and L. We give asymptotically optimal bounds for L containing only elements of s<q residue classes modulo q, where q is arbitrary (even non-prime) and s is a constant. As a consequence, we obtain a version of the Frankl–Rödl result about forbidden intersections for the case of two forbidden intersections. We also give tight bounds for L={0,...,k}.
引用
收藏
页码:555 / 566
页数:11
相关论文
共 50 条