Advanced model predictive control strategies for evaporation processes in the pharmaceutical industries

被引:2
|
作者
Nascu, Ioana [1 ]
Diangelakis, Nikolaos A. [2 ]
Munoz, Salvador Garcia [3 ]
Pistikopoulos, Efstratios N. [4 ,5 ]
机构
[1] Tech Univ Cluj Napoca, Fac Automat & Comp Sci, Dept Automat, Cluj Napoca 400114, Romania
[2] Tech Univ Crete, Sch Chem & Environm Engn, Khania 73100, Greece
[3] Eli Lilly & Co, LillyResearch Labs, Synthet Mol Design & Dev, Indianapolis, IN 46074 USA
[4] Texas A&M Univ, Texas A&M Energy Inst, College Stn, TX USA
[5] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX USA
关键词
Evaporation process; Pharmaceuticals; Process control; PID; MPC; Multiparameric; explicit model based; predictive control; OPTIMIZATION; DESIGN; QUALITY; PERSPECTIVES;
D O I
10.1016/j.compchemeng.2023.108212
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a framework to design control systems for an evaporation process in the pharmaceutical industry with the aim to deliver guaranteed operability for different molecules and under different thermody-namic scenarios. Based on a mathematical model developed within the gPROMS platform calibrated and vali-dated with real data from experiments, three control methods are implemented and compared, (i) Proportional Integrative Derivative control (PID), (ii) Model Predictive Control (MPC) and (iii) explicit/multi-parametric Model Predictive Control (mp-MPC). The performance and limits of the derived control schemes are then established and tested for reference tracking as well as disturbances rejection.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Model predictive control for continuous pharmaceutical feeding blending units
    Celikovic, Selma
    Kirchengast, Martin
    Rehrl, Jakob
    Kruisz, Julia
    Sacher, Stephan
    Khinast, Johannes
    Horn, Martin
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 154 : 101 - 114
  • [32] Multiobjective nonlinear model predictive control of pharmaceutical batch crystallizers
    Sridhar, L. N.
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2020, 46 (12) : 2089 - 2097
  • [33] Introduction of Model Predictive Control Strategies for Control of Power Converters
    Lee Y.I.
    Journal of Institute of Control, Robotics and Systems, 2024, 30 (04) : 473 - 478
  • [34] Reconfigurable flight control strategies using model predictive control
    Kale, MM
    Chipperfield, AJ
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2002, : 43 - 48
  • [35] Model Predictive Control Strategies in Microgrids: A Concise Revisit
    Shahzad, Sulman
    Abbasi, Muhammad Abbas
    Chaudhry, Muhammad Akmal
    Hussain, Muhammad Majid
    IEEE ACCESS, 2022, 10 : 122211 - 122225
  • [36] Fusion of inverse optimal and model predictive control strategies
    Ulusoy, Luetfi
    Guzelkaya, Mujde
    Eksin, Ibrahim
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (06) : 1122 - 1134
  • [37] An Automatic Tuning Method for Model Predictive Control Strategies
    Fontes, Raony M.
    Martins, Marcio A. F.
    Odloak, Darci
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (47) : 21602 - 21613
  • [38] Strategies for Cooperative UAVs Using Model Predictive Control
    Manoharan, Amith
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5196 - 5197
  • [39] Review of model predictive control strategies for matrix converters
    Khosravi, Mahyar
    Amirbande, Masoume
    Khaburi, Davood A.
    Rivera, Marco
    Riveros, Jose
    Rodriguez, Jose
    Vahedi, Abolfazl
    Wheeler, Patrick
    IET POWER ELECTRONICS, 2019, 12 (12) : 3021 - 3032
  • [40] Optimal move blocking strategies for model predictive control
    Shekhar, Rohan C.
    Manzie, Chris
    AUTOMATICA, 2015, 61 : 27 - 34