Optimal move blocking strategies for model predictive control

被引:44
|
作者
Shekhar, Rohan C. [1 ]
Manzie, Chris [1 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Move blocking; Model predictive control; Complexity reduction; Parametric optimisation; ALGORITHM;
D O I
10.1016/j.automatica.2015.07.030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a systematic methodology for designing move blocking strategies to reduce the complexity of a model predictive controller for linear systems, with explicit optimisation of the blocking structure using mixed-integer programming. Given a move-blocked predictive controller with a terminal invariant set constraint for stability, combined with an input parameterisation to preserve recursive feasibility, two different optimisation problems are formulated for blocking structure selection. The first problem calculates the maximum achievable reduction in the number of input decision variables and prediction horizon length, subject to the controller's region of attraction containing a specified subset of the state space. Then, for a given fixed horizon length and block count determined by hardware capabilities, the second problem seeks to maximise the volume of an inner approximation to the region of attraction. Numerical examples show that the resulting blocking structures are able to optimally reduce controller complexity and improve region of attraction volume. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [1] Parallel Move Blocking Model Predictive Control
    Longo, Stefano
    Kerrigan, Eric C.
    Ling, Keck Voon
    Constantinides, George A.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1239 - 1244
  • [2] On the Quadratic Programming Solution for Model Predictive Control with Move Blocking
    Otta, Pavel
    Santin, Ondrej
    Havlena, Vladimir
    PROCESS CONTROL '21 - PROCEEDING OF THE 2021 23RD INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2021, : 49 - 54
  • [3] Least-restrictive move-blocking model predictive control
    Gondhalekar, Ravi
    Imura, Jun-ichi
    AUTOMATICA, 2010, 46 (07) : 1234 - 1240
  • [4] Suboptimal nonlinear model predictive control with input move-blocking
    Makarow, Artemi
    Roesmann, Christoph
    Bertram, Torsten
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (03) : 450 - 459
  • [5] Move blocking strategies in receding horizon control
    Cagienard, R.
    Grieder, P.
    Kerrigan, E. C.
    Morari, M.
    JOURNAL OF PROCESS CONTROL, 2007, 17 (06) : 563 - 570
  • [6] Move blocking strategies in receding horizon control
    Cagienard, R
    Grieder, P
    Kerrigan, EC
    Morari, M
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2023 - 2028
  • [7] Fusion of inverse optimal and model predictive control strategies
    Ulusoy, Luetfi
    Guzelkaya, Mujde
    Eksin, Ibrahim
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (06) : 1122 - 1134
  • [8] A move-blocking strategy to improve tracking in predictive control
    Valencia-Palomo, G.
    Pelegrinis, M.
    Rossiter, J. A.
    Gondhalekar, R.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6293 - 6298
  • [9] An Improved Move-Blocking Strategy in Predictive Control for Setpoint Tracking
    Valencia, G.
    Lopez, F. R.
    Garcia, C. D.
    Orrante, J. A.
    Hoyo, J. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (05) : 806 - 812
  • [10] Cooperative H8 Robust Move Blocking Fuzzy Model Predictive Control of Nonlinear Systems
    Farbood, Mohsen
    Shasadeghi, Mokhtar
    Niknam, Taher
    Safarinejadian, Behrouz
    Izadian, Afshin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (12): : 7707 - 7718