Least-restrictive move-blocking model predictive control

被引:57
|
作者
Gondhalekar, Ravi [1 ,2 ]
Imura, Jun-ichi [3 ]
机构
[1] Osaka Univ, Grad Sch Engn, Dept Mech Engn, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Frontier Res Base Global Young Researchers, Grad Sch Engn, Suita, Osaka 5650871, Japan
[3] Tokyo Inst Technol, Grad Sch Informat Sci & Engn, Dept Mech & Environm Informat, Meguro Ku, Tokyo 1528552, Japan
关键词
Model predictive control; Constrained control; Move-blocking; Strong feasibility; PERFORMANCE; SYSTEMS;
D O I
10.1016/j.automatica.2010.04.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Move-blocking lowers the computational complexity of model predictive control (MPC) problems by reducing the number of optimization variables. However, this may render states close to constraints infeasible. Thus move-blocking generally results in control laws that are restrictive; the controller domains may be unacceptably and unnecessarily small. Furthermore, different move-blocking strategies may result in controller domains of different sizes, all other factors being equal. In this paper an approach is proposed to design move-blocking MPC control laws that are least-restrictive, i.e. the controller domain is equal to the maximum controlled invariant set. The domains of different move-blocking controllers are then by design equal to each other. This allows comparison of differing move-blocking strategies based on cost performance only, without needing to consider domain size also. Thus this paper is a step towards being able to derive optimal move-blocking MPC control laws. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1234 / 1240
页数:7
相关论文
共 50 条
  • [1] Suboptimal nonlinear model predictive control with input move-blocking
    Makarow, Artemi
    Roesmann, Christoph
    Bertram, Torsten
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (03) : 450 - 459
  • [2] A move-blocking strategy to improve tracking in predictive control
    Valencia-Palomo, G.
    Pelegrinis, M.
    Rossiter, J. A.
    Gondhalekar, R.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 6293 - 6298
  • [3] An Improved Move-Blocking Strategy in Predictive Control for Setpoint Tracking
    Valencia, G.
    Lopez, F. R.
    Garcia, C. D.
    Orrante, J. A.
    Hoyo, J. A.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (05) : 806 - 812
  • [4] Least-restrictive robust periodic model predictive control applied to room temperature regulation
    Gondhalekar, Ravi
    Oldewurtel, Frauke
    Jones, Colin N.
    [J]. AUTOMATICA, 2013, 49 (09) : 2760 - 2766
  • [5] Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling
    Jassmann, U.
    Dickler, S.
    Zierath, J.
    Hakenberg, M.
    Abel, D.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
  • [6] THE PRINCIPLE OF LEAST-RESTRICTIVE MATERIALS
    STRATTON, JM
    [J]. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 1990, 84 (01) : 3 - &
  • [7] A long-horizon move-blocking based direct power model predictive control for dynamic enhancement of DC microgrids
    Tatari, Fatemeh Rezayof
    Banejad, Mahdi
    Kalat, Ali Akbarzadeh
    Iwanski, Grzegorz
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (07)
  • [8] Parallel Move Blocking Model Predictive Control
    Longo, Stefano
    Kerrigan, Eric C.
    Ling, Keck Voon
    Constantinides, George A.
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1239 - 1244
  • [9] Least-restrictive environment for students with visual impairments
    Smith, Derrick
    Wild, Tiffany
    [J]. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 2006, 100 (10) : 592 - 593
  • [10] Optimal move blocking strategies for model predictive control
    Shekhar, Rohan C.
    Manzie, Chris
    [J]. AUTOMATICA, 2015, 61 : 27 - 34