Shape preserving rational [3/2] Hermite interpolatory subdivision scheme

被引:1
|
作者
Bebarta, Shubhashree [1 ]
Jena, Mahendra Kumar [1 ]
机构
[1] VSS Univ Technol, Dept Math, Sambalpur 768018, India
关键词
Rational [3/2] Bernstein Bezier polynomial; Subdivision Scheme; Hermite Scheme; Convexity; Monotonicity; CUBIC SPLINE; NONUNIFORM; VECTOR;
D O I
10.1007/s10092-022-00503-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new Hermite interpolatory subdivision scheme for curve interpolation is introduced. The scheme is constructed from the Rational [3/2] Bernstein Bezier polynomial. We call it the [3/2]-scheme. The limit function of the [3/2]-scheme interpolates both the function values and their derivatives. The proposed scheme has three shape parameters w(0), w(1) and w(2). It is shown that if w(1) = w(0)+w(2)/2 , then the [3/2]-scheme reproduces linear polynomial and is C-1 provided w(0 )and w(2) lie in a region of convergence. The scheme also satisfies the shape preserving properties, i.e., monotonicity and convexity. We also compare the [3/2]-scheme with other existing schemes like the [2/2]-scheme and the Merrien scheme introduced recently. An error analysis shows that the [3/2]-scheme is better than the [2/2]-scheme and the Merrien scheme. Further, it is observed that in case w(0) = w(1) = w(2), the [3/2]-scheme reduces to the Merrien scheme.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Convexity preserving interpolatory subdivision with conic precision
    Albrecht, Gudrun
    Romani, Lucia
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 4049 - 4066
  • [22] Interpolatory convexity preserving subdivision schemes for curves
    Li, A
    GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 379 - 381
  • [23] Shape-preserving C1 Hermite interpolants generated by a Gori-Pitolli subdivision scheme
    Pelosi, Francesca
    Sablonniere, Paul
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 686 - 711
  • [24] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Mariantonia Cotronei
    Caroline Moosmüller
    Tomas Sauer
    Nada Sissouno
    Constructive Approximation, 2019, 50 : 341 - 366
  • [25] Interpolatory Subdivision Curves with Local Shape Control
    Beccari, Carolina
    Casciola, Giulio
    Romani, Lucia
    WSCG 2006: FULL PAPERS PROCEEDINGS: 14TH INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION 2006, 2006, : 33 - 40
  • [26] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Cotronei, Mariantonia
    Moosmuller, Caroline
    Sauer, Tomas
    Sissouno, Nada
    CONSTRUCTIVE APPROXIMATION, 2019, 50 (02) : 341 - 366
  • [27] A Unified Interpolatory Subdivision Scheme for Quadrilateral Meshes
    Deng, Chongyang
    Ma, Weiyin
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (03):
  • [28] Interpolatory subdivision scheme for geometric volumetric modeling
    Wang, JM
    You, F
    Luo, XN
    Xue, YY
    CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 351 - 352
  • [29] Interpolatory √3-subdivision
    Labsik, U
    Greiner, G
    COMPUTER GRAPHICS FORUM, 2000, 19 (03) : C131 - +
  • [30] Dynamic programming with shape-preserving rational spline Hermite interpolation
    Cai, Yongyang
    Judd, Kenneth L.
    ECONOMICS LETTERS, 2012, 117 (01) : 161 - 164