A selective review of sufficient dimension reduction for multivariate response regression

被引:1
|
作者
Dong, Yuexiao [1 ]
Soale, Abdul-Nasah [2 ]
Power, Michael D. [1 ]
机构
[1] Temple Univ, Dept Stat Operat & Data Sci, Philadelphia, PA 19122 USA
[2] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA
关键词
Minimum average variance estimation; Partial least squares; Projective resampling; Sliced inverse regression; SLICED INVERSE REGRESSION; CENTRAL MEAN SUBSPACE; ESTIMATOR; MOMENT; MODELS;
D O I
10.1016/j.jspi.2023.02.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We review sufficient dimension reduction (SDR) estimators with multivariate response in this paper. A wide range of SDR methods are characterized as inverse regression SDR estimators or forward regression SDR estimators. The inverse regression family includes pooled marginal estimators, projective resampling estimators, and distance -based estimators. Ordinary least squares, partial least squares, and semiparametric SDR estimators, on the other hand, are discussed as estimators from the forward regression family.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 70
页数:8
相关论文
共 50 条
  • [31] Online Sufficient Dimension Reduction Through Sliced Inverse Regression
    Cai, Zhanrui
    Li, Runze
    Zhu, Liping
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [32] Penalized principal logistic regression for sparse sufficient dimension reduction
    Shin, Seung Jun
    Artemiou, Andreas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 48 - 58
  • [33] Online sufficient dimension reduction through sliced inverse regression
    Cai, Zhanrui
    Li, Runze
    Zhu, Liping
    [J]. Journal of Machine Learning Research, 2020, 21
  • [34] Sufficient dimension reduction on marginal regression for gaps of recurrent events
    Zhao, Xiaobing
    Zhou, Xian
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 127 : 56 - 71
  • [35] Extending the Scope of Inverse Regression Methods in Sufficient Dimension Reduction
    Zhu, Li-Ping
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (01) : 84 - 95
  • [36] Nonlinear sufficient dimension reduction for distribution-on-distribution regression
    Zhang, Qi
    Li, Bing
    Xue, Lingzhou
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202
  • [37] Dimension reduction in binary response regression
    Cook, RD
    Lee, H
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1187 - 1200
  • [38] SUFFICIENT DIMENSION REDUCTION WITH MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS
    Guan, Yu
    Xie, Chuanlong
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2017, 27 (01) : 335 - 355
  • [39] Efficient dimension reduction for multivariate response data
    Zhang, Yaowu
    Zhu, Liping
    Ma, Yanyuan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 155 : 187 - 199
  • [40] Principal weighted logistic regression for sufficient dimension reduction in binary classification
    Boyoung Kim
    Seung Jun Shin
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 194 - 206