Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture

被引:20
|
作者
Punithavathi, R. [1 ]
Rani, A. Delphin Carolina [2 ]
Sughashini, K. R. [3 ]
Kurangi, Chinnarao [4 ]
Nirmala, M. [5 ]
Ahmed, Hasmath Farhana Thariq [6 ]
Balamurugan, S. P. [7 ]
机构
[1] M Kumarasamy Coll Engn, Dept Informat Technol, Karur 639113, India
[2] K Ramakrishnan Coll Technol, Dept Comp Sci & Engn, Tiruchirapalli 621112, India
[3] Easwari Engn Coll, Dept Elect & Instrumentat, Chennai 600089, Tamil Nadu, India
[4] Pondicherry Univ, Pondicherry 605014, India
[5] Oxford Coll Engn, Dept Comp Sci & Engn, Bangalore 560068, Karnataka, India
[6] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Comp Sci Engn, Chennai 602105, Tamil Nadu, India
[7] Annamalai Univ, Fac Sci, Dept Comp & Informat Sci, Chidambaram 608002, India
来源
关键词
Precision agriculture; smart farming; weed detection; computer vision; deep learning; MACHINE;
D O I
10.32604/csse.2023.027647
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Presently, precision agriculture processes like plant disease, crop yield prediction, species recognition, weed detection, and irrigation can be accom-plished by the use of computer vision (CV) approaches. Weed plays a vital role in influencing crop productivity. The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased. Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity, this study presents a novel computer vision and deep learning based weed detection and classification (CVDL-WDC) model for precision agriculture. The proposed CVDL-WDC technique intends to prop-erly discriminate the plants as well as weeds. The proposed CVDL-WDC techni-que involves two processes namely multiscale Faster RCNN based object detection and optimal extreme learning machine (ELM) based weed classification. The parameters of the ELM model are optimally adjusted by the use of farmland fertility optimization (FFO) algorithm. A comprehensive simulation analysis of the CVDL-WDC technique against benchmark dataset reported the enhanced out-comes over its recent approaches interms of several measures.
引用
收藏
页码:2759 / 2774
页数:16
相关论文
共 50 条
  • [21] Deep learning model for plant-leaf disease detection in precision agriculture
    Bajpai C.
    Sahu R.
    Naik K.J.
    International Journal of Intelligent Systems Technologies and Applications, 2023, 21 (01) : 72 - 91
  • [22] Precision Agriculture: Computer Vision-Enabled Sugarcane Plant Counting in the Tillering Phase
    Ubaid, Muhammad Talha
    Javaid, Sameena
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [23] Computer vision model for sorghum aphid detection using deep learning
    Grijalva, Ivan
    Spiesman, Brian J.
    McCornack, Brian
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 13
  • [24] Hybrid Metaheuristics Feature Selection with Stacked Deep Learning-Enabled Cyber-Attack Detection Model
    Asiri M.M.
    Mohamed H.G.
    Nour M.K.
    Al Duhayyim M.
    Aziz A.S.A.
    Motwakel A.
    Zamani A.S.
    Eldesouki M.I.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1679 - 1694
  • [25] Deep Learning-Enabled Technologies for Bioimage Analysis
    Rabbi, Fazle
    Dabbagh, Sajjad Rahmani
    Angin, Pelin
    Yetisen, Ali Kemal
    Tasoglu, Savas
    MICROMACHINES, 2022, 13 (02)
  • [26] A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision Based Precision Agriculture Tasks
    Haug, Sebastian
    Ostermann, Joern
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT IV, 2015, 8928 : 105 - 116
  • [27] Deep Learning-Enabled Diagnosis of Liver Adenocarcinoma
    Albrecht, Thomas
    Rossberg, Annik
    Albrecht, Jana Dorothea
    Nicolay, Jan Peter
    Straub, Beate Katharina
    Gerber, Tiemo Sven
    Albrecht, Michael
    Brinkmann, Fritz
    Charbel, Alphonse
    Schwab, Constantin
    Schreck, Johannes
    Brobeil, Alexander
    Flechtenmacher, Christa
    von Winterfeld, Moritz
    Koehler, Bruno Christian
    Springfeld, Christoph
    Mehrabi, Arianeb
    Singer, Stephan
    Vogel, Monika Nadja
    Neumann, Olaf
    Stenzinger, Albrecht
    Schirmacher, Peter
    Weis, Cleo-Aron
    Roessler, Stephanie
    Kather, Jakob Nikolas
    Goeppert, Benjamin
    GASTROENTEROLOGY, 2023, 165 (05) : 1262 - 1275
  • [28] Efficient Deep Reinforcement Learning-Enabled Recommendation
    Pang, Guangyao
    Wang, Xiaoming
    Wang, Liang
    Hao, Fei
    Lin, Yaguang
    Wan, Pengfei
    Min, Geyong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 871 - 886
  • [29] Advancing precision agriculture with computer vision: A comparative study of YOLO models for weed and crop recognition
    Zoubek, Tomas
    Bumbalek, Roman
    Ufitikirezi, Jean de Dieu Marcel
    Strob, Miroslav
    Filip, Martin
    Spalek, Frantisek
    Hermanek, Ales
    Bartos, Petr
    CROP PROTECTION, 2025, 190
  • [30] Machine learning-enabled soil classification for precision agriculture: a study on spectral analysis and soil property determination
    Amol D. Vibhute
    Karbhari V. Kale
    Sandeep V. Gaikwad
    Applied Geomatics, 2024, 16 : 181 - 190