Wandering principal optical axes in van der Waals triclinic materials

被引:3
|
作者
Ermolaev, Georgy A. [1 ]
Voronin, Kirill V. [2 ]
Toksumakov, Adilet N. [3 ]
Grudinin, Dmitriy V. [1 ]
Fradkin, Ilia M. [1 ]
Mazitov, Arslan [4 ]
Slavich, Aleksandr S. [3 ]
Tatmyshevskiy, Mikhail K. [3 ]
Yakubovsky, Dmitry I. [3 ]
Solovey, Valentin R. [1 ]
Kirtaev, Roman V. [1 ]
Novikov, Sergey M. [3 ]
Zhukova, Elena S. [3 ]
Kruglov, Ivan [1 ]
Vyshnevyy, Andrey A. [1 ]
Baranov, Denis G. [3 ]
Ghazaryan, Davit A. [3 ,5 ]
Arsenin, Aleksey V. [1 ,5 ]
Martin-Moreno, Luis [6 ,7 ]
Volkov, Valentyn S. [1 ,5 ]
Novoselov, Kostya S. [8 ,9 ,10 ]
机构
[1] XPANCEO, Emerging Technol Res Ctr, Dubai Investment Pk First, Dubai, U Arab Emirates
[2] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[3] Moscow Ctr Adv Studies, Kulakova Str 20, Moscow 123592, Russia
[4] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland
[5] Yerevan State Univ, Lab Adv Funct Mat, Yerevan 0025, Armenia
[6] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50009, Spain
[7] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza 50009, Spain
[8] Univ Manchester, Natl Graphene Inst NGI, Manchester M13 9PL, England
[9] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 0309, Singapore
[10] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
关键词
HYPERBOLIC SURFACE-POLARITONS; ATOMICALLY THIN; NEGATIVE REFRACTION; PHOTONIC CRYSTALS; SYMMETRY; RES2; ANISOTROPY; EXCITONS;
D O I
10.1038/s41467-024-45266-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation - an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary. Here, we show that the low-symmetry triclinic crystalline structure of van der Waals rhenium disulfide and rhenium diselenide is characterized by wandering principal optical axes in the space-wavelength domain with above pi/2 degree of rotation for in-plane components. In turn, this leads to wavelength-switchable propagation directions of their waveguide modes. The physical origin of wandering principal optical axes is explained using a multi-exciton phenomenological model and ab initio calculations. We envision that the wandering principal optical axes of the investigated low-symmetry triclinic van der Waals crystals offer a platform for unexplored anisotropic phenomena and nanophotonic applications. Principal optical axes define light-matter interactions in crystals and they are usually assumed to be stationary. Here, the authors report the observation of wavelength-dependent principal optical axes in ternary van der Waals crystals (ReS2 and ReSe2), leading to wavelength-switchable propagation directions of their waveguide modes.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] Optical characterization of van der Waals materials via near-field microscopy
    Wintz, Daniel
    Zhu, Alexander Y.
    Wang, Ke
    Ambrosio, Antonio
    Devlin, Rob
    Crossno, Jesse
    Kim, Philip
    Capasso, Federico
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [32] Materials perspective on Casimir and van der Waals interactions
    Woods, L. M.
    Dalvit, D. A. R.
    Tkatchenko, A.
    Rodriguez-Lopez, P.
    Rodriguez, A. W.
    Podgornik, R.
    REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
  • [33] Functionalizing Van der Waals materials by shaping them
    Jariwala, Deep
    LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [34] Ferroelectric order in van der Waals layered materials
    Dawei Zhang
    Peggy Schoenherr
    Pankaj Sharma
    Jan Seidel
    Nature Reviews Materials, 2023, 8 : 25 - 40
  • [35] Amorphous Ferromagnetic Metal in van der Waals Materials
    Zhang, Siyue
    Harii, Kazuya
    Yokouchi, Tomoyuki
    Okayasu, Satoru
    Shiomi, Yuki
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (02)
  • [36] Nanophotonic biosensors harnessing van der Waals materials
    Sang-Hyun Oh
    Hatice Altug
    Xiaojia Jin
    Tony Low
    Steven J. Koester
    Aleksandar P. Ivanov
    Joshua B. Edel
    Phaedon Avouris
    Michael S. Strano
    Nature Communications, 12
  • [37] Polaritons in Photonic Hypercrystals of van der Waals Materials
    Sahoo, Nihar Ranjan
    Kumar, Brijesh
    Prasath, S. S. Jatin
    Dixit, Saurabh
    Kumar, Rohit
    Bapat, Aneesh
    Sharma, Parul
    Caldwell, Joshua D.
    Kumar, Anshuman
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [38] Ferroelectric order in van der Waals layered materials
    Zhang, Dawei
    Schoenherr, Peggy
    Sharma, Pankaj
    Seidel, Jan
    NATURE REVIEWS MATERIALS, 2023, 8 (01) : 25 - 40
  • [39] van der Waals Layered Materials: Opportunities and Challenges
    Duong, Dinh Loc
    Yun, Seok Joon
    Lee, Young Hee
    ACS NANO, 2017, 11 (12) : 11803 - 11830
  • [40] Engineering van der Waals Materials for Advanced Metaphotonics
    Lin, Han
    Zhang, Zhenfang
    Zhang, Huihui
    Lin, Keng-Te
    Wen, Xiaoming
    Liang, Yao
    Fu, Yang
    Lau, Alan Kin Tak
    Ma, Tianyi
    Qiu, Cheng-Wei
    Jia, Baohua
    CHEMICAL REVIEWS, 2022, 122 (19) : 15204 - 15355